Inclusion of NLO EW corrections in **NNLO+PS** event generation with MiNNLO_{PS}

Based on [2208.12660] J. Lindert, D. Lombardi, M. Wiesemann, G. Zanderighi, S.Z.

Workshop on Tools for High Precision LHC Simulations

Silvia Zanoli Max Planck Institute for Physics

Introduction

- **Precision physics** is a promising path for the observation of effects beyond the Standard Model.
- NNLO (QCD) computations are crucial for an accurate description of data, but they need to be supplemented by EW corrections for reaching the required experimental accuracy.
- The **matching** of a fixed-order calculation with parton showers is required for a realistic description of an event at a collider.

MAX PLANCK INSTITUTE FOR PHYSICS

WZ production

- gauge couplings and to the gauge symmetry structure of the EW sector.
- experimental signature (we consider the purely leptonic decay with one neutrino).

CURRENT STATE OF THE ART:

NNLO QCD calculation NLO QCD + NLO EW matched to Parton Showers **MINLO QCD + NLO EW combination**

WHY WZ PRODUCTION?

• The production of a pair of vector bosons is highly relevant, as it provides access to trilinear

• WZ production is particularly interesting both for the large cross section and the clean

[Bierweiler, Kasprzik, Kühn (2013), Baglio, Ninh, Weber (2013)] [Biedermann, Denner, Hofer (2017)]

[Grazzini, Kallweit, Rathlev, Wiesemann (2016), (2017)]

[Chiesa, Oleari, Re (2020)]

[Grazzini, Kallweit, Lindert, Pozzorini, Wiesemann (2020)]

Outline of the talk

NNLO+PS (QCD) calculation using $MiNNLO_{PS}$ Combination of NNLO+PS (QCD) with NLO+PS (EW) computations

1) How to obtain NNLO+PS (QCD) and NLO+PS (EW) results for WZ production

- a. Generation of NNLO+PS (QCD) results using MiNNLO_{PS}
- b. Generation of NLO+PS (EW) results using POWHEG
- d. Treatment of the shower (PY8) and implementation of a veto procedure
- Phenomenological analysis and comparison with data 2)
- 3) Summary and outlooks

THIS TALK:

c. Combination of NNLO+PS (QCD) and NLO+PS (EW) results (different matching schemes)

NNLO+PS (QCD) predictions

$$pp \to l'^{\pm} \nu_{l'} l^{+} l^{-} + X_{\bar{d}}$$

1) Generation of

- Order $\mathcal{O}(\alpha^4 \alpha_s^2)$.
- No loop-induced gluon-fusion contributions.
- leading helicity amplitudes in some kinematic regions).

• Important NNLO corrections (10-15%), due to radiation zero effect at LO (= vanishing of the

NLO+PS (EW) predictions

$$pp \to l'^{\pm} \nu_{l'} l^{+} l^{-} + X_{\bar{d}}$$

2) Generation of NLO+PS (EW) results using POWHEG

$$d\sigma_{\rm F}^{\rm pwg} = d\Phi_{\rm F}\bar{\rm B}^{\rm pwg} \times \left\{ \Delta_{\rm pwg} \\ \bar{\rm B}^{\rm pwg} \right\}$$

- Order $\mathcal{O}(\alpha^5)$.
- Real radiation corresponds to photon radiation.
- No photon-photon contribution at this order.
- Photon-quark contributions are not considered (formally, they are $\mathcal{O}(\alpha^{6}L)$). 0

Combinations of QCD(+PS) and EW(+PS) results MAX PLANCK INSTITUTE A

3) Combination of NNLO_{QCD}+PS and NLO_{EW}+PS: MATCHING SCHEMES

- This assumption is violated when giant K-factors are present (= hard vector-boson+jet topologies, with a soft second vector boson).
- The average of the two schemes can give a pragmatic estimate in these regions.

• The multiplicative scheme is preferable in the high energy limit, where EW Sudakov-logs are dominant and dominant QCD effects arise at scales below the hard scale. —> **QCD factorizes**.

Combinations of QCD(+PS) and EW(+PS) results MAX PLANCK INSTITUTE FOR PHYSICS

3) Combination of NNLO_{QCD}+PS and NLO_{EW}+PS: TREATMENT OF THE SHOWER

1. The **formal accuracy** of the calculation **must not be spoilt**. 2. We must avoid double counting.

We let the QCD and/or QED showers radiate in whole the phase space and then we apply the following veto procedure:

NNLO_{QCD}+PS: • QCD shower is restricted by the transverse momentum of the hardest QCD emission generated at Les Houches level (as commonly done in POWHEG).

- QED shower is unconstrained.
- **NLO_{EW}+PS: QCD** shower is **unconstrained**.

• **QED** shower is **restricted** by the transverse momentum of the hardest QED emission generated at Les Houches level (POWHEG multiple-radiation scheme —> three different starting scales for ISR, FSR from W decay, FSR from Z decay).

NNLO_{QCD}+PS and NLO_{EW}+PS combinations

- - 2. $NNLO_{OCD}^{(QCD, QED)_{PS}} + NLO_{EW}^{(QED)_{PS}} LO^{(QED)_{PS}}$
 - 3. NNLO_{OCD}^{(QCD)_{PS}} + NLO_{EW}^{(QCD, QED)_{PS}} LO^{(QCD)_{PS}}
- - 5. $NNLO_{QCD}^{(QCD, QED)_{PS}} \times NLO_{EW}^{(QED)_{PS}}/LO^{(QED)_{PS}}$
 - 6. $NLO_{EW}^{(QCD, QED)_{PS}} \times NNLO_{QCD}^{(QCD)_{PS}}/LO^{(QCD)_{PS}}$
 - 7. $NNLO_{OCD}^{(QCD)_{PS}} \times NLO_{EW}^{f.o.}/LO^{f.o.}$

ADDITIVE: 1. NNLO_{QCD}^{(QCD, QED)_{PS}} + NLO_{EW}^{(QCD, QED)_{PS}} - LO^{(QCD, QED)_{PS}} = NNLO_{QCD+EW}^{(QCD, QED)_{PS}}

MULTIPLICATIVE: 4. NNLO_{QCD}^{(QCD, QED)_{PS}} × NLO_{EW}^{(QCD, QED)_{PS}}/LO^{(QCD, QED)_{PS}} = NNLO_{QCD×EW}^{(QCD, QED)_{PS}}

NOTATION:

$$(N)NLO_X^{(Y)_{PS}}$$

X = QCD,EW calculation
Y = QCD,QED showers (PY8)

Phenomenological results (1)

1st November 2022

MAX PLANCK INSTITUTE FOR PHYSICS

Phenomenological results (1)

MAX PLANCK INSTITUTE FOR PHYSICS

Phenomenological results (2)

1st November 2022

MAX PLANCK INSTITUTE FOR PHYSICS

Phenomenological results (2)

1st November 2022

MAX PLANCK INSTITUTE FOR PHYSICS

Phenomenological results (2)

MAX PLANCK INSTITUTE FOR PHYSICS $\Delta_{p} \Delta_{q \ge \frac{1}{2}}$

Phenomenological results (3)

1st November 2022

Silvia Zanoli - Workshop on Tools for High Precision LHC Simulations

MAX PLANCK INSTITUTE FOR PHYSICS $\Delta_{p} \Delta_{q} \ge \frac{1}{2}$

[2208.12660]

Phenomenological results (3)

1st November 2022

Silvia Zanoli - Workshop on Tools for High Precision LHC Simulations

MAX PLANCK INSTITUTE FOR PHYSICS

[2208.12660]

Phenomenological results (4)

1st November 2022

Silvia Zanoli - Workshop on Tools for High Precision LHC Simulations

MAX PLANCK INSTITUTE FOR PHYSICS

Phenomenological results (4)

[2208.12660]

MAX PLANCK INSTITUTE FOR PHYSICS

Comparison against data (1)

1st November 2022

Silvia Zanoli - Workshop on Tools for High Precision LHC Simulations

[2208.12660]

Comparison against data (2)

1st November 2022

Silvia Zanoli - Workshop on Tools for High Precision LHC Simulations

[2208.12660]

MAX PLANCK INSTITUTE FOR PHYSICS

Conclusions and Outlooks

- **NNLO+PS (QCD)** predictions are strongly needed for a realistic description of LHC events. O The MINNLO_{PS} method is a powerful tool for reaching this accuracy.
- O In the context of precision physics, the inclusion of NLO EW corrections on top of the NNLO calculations is particularly important.
- O I showed and discuss results for WZ production at NNLO (QCD) and NLO (EW) accuracy matched to parton showers for 13 TeV LHC collisions.
- O The natural next step is the implementation of the combined generation of NNLO QCD and NLO EW accurate events, rather than an a posteriori recombination.

Conclusions and Outlooks

- **NNLO+PS (QCD)** predictions are strongly needed for a realistic description of LHC events. O The MINNLO_{PS} method is a powerful tool for reaching this accuracy.
- O In the context of precision physics, the inclusion of NLO EW corrections on top of the NNLO calculations is particularly important.
- O I showed and discuss results for WZ production at NNLO (QCD) and NLO (EW) accuracy matched to parton showers for 13 TeV LHC collisions.
- O The natural next step is the implementation of the combined generation of NNLO QCD and NLO EW accurate events, rather than an a posteriori recombination.

Thank you!

