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I. Basics of the Pure Spinor Formalism

The Pure Spinor Formalism (PS) interpolates between the two traditional

approaches to Superstring Theory avioding their drawbacks:

Ramond Neveu-Schwarz (RNS) Green Schwarz (GS)

no spacetime spinors on worldsheet, spacetime spinors 6 present ...

thus lack of manifest spacetime SUSY| ... but WS action quartic in 6
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The Pure Spinor Formalism (PS) interpolates between the two traditional

approaches to Superstring Theory avioding their drawbacks:

Ramond Neveu-Schwarz (RNS) Green Schwarz (GS)

no spacetime spinors on worldsheet, spacetime spinors 6 present ...
thus lack of manifest spacetime SUSY| ... but WS action quartic in 6
worldsheet spinors introduce quantization only in

different spin structures light cone gauge
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Worldsheet action in PS formalism = Siegel’s modification of GS action:

1 1 - . _

D, 0 Grassmann odd spinors of SO(1,9)

More convenient to use SUSY variables 060% as well as

[ = oX™ + %Q’ymaﬁ
1 1

Note that GGS formalism imposes constraint d, = 0.



Ghost sector of PS formalism involves Grassmann even spinors A, w:

1
S

ghost - % dQZ {U}@ 5)\04 + U_J@ 65\& }

Assume BRST operator! (3 no covariant derivation yet)

d
(BRST = j{—z )\O‘(z) da(z) + right mover

271

To ensure nilpotency QQBRST = 0 and

the ghost spinor A has to satisty the pure spinor constraint

Recall the definition d,, :=p, — 1 (0X™ + 1(69™30)) (Y 6)a



II. Vertex operators for the gauge multiplet

Physical states are generated by vertex operators V' (z), conformal fields

in the Q)prgT cohomology.

Vertex operators for gluon ¢ and gluino x in RNS language are

Viy(2, 6, k) = Eny™(2) o~ 0(2) JikpXP(2)

Vi(z,u k) = u®Zn(2) o—0(2)/2 ikpXP(2)

with momenta k and polarizations &, u (subject to £k, =Ku = 0). The

NS fermion ¢ and R spin field =, define an interacting CF'T.

Note that Vj; and V), are related by
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In PS laguage, 9 manifestly supersymmetric vertex for the (¢, y) multiplet

Viz, & u k) = A%z) Aq (X(z), 0(z), &, u, k)

An(X(2),0(2), &, u k) = SYM superfields, see next slide

Also have an integrated vertex U containing further SYM superfields

1
U = Ao + Am 11"+ W+ 2 (0™ X) Fin

such that QgreTU = OV and thus Qprgt [ d2U(z) = 0.

More on the later ...



SYM equations of motion give rise to the following 6 expansions

N " m 1 m Z mn
Ag(2,0) = exp(ik-z) {% (7" 0o = 3 (wym 0) (" 0)a = 7 Fiom &u) (1 0)a (077 6)
1

1
mnp o

%0

. 1
Ap(z,0) = exp(zk . :U) {fm — (uym @) — 1 kip &g (0 vm A1 0)

(V" 0)a k" &gy (0 Yrs 0) (0 P10) + 0(86)}

+ 12—2 i (6 m 777 0) (1, 0) + 0(94)}

. « i mn g\« 0 mn n\o
Wa(x79> - eXp<Zk : 33) {u _ 5 k[m gn] (’)/ (9) + Z km (’Y 6) (u’}/n 9)

1 mn (0% ]
— —ky k[p fq] (7 (9) (9 Yo Y 9) + 0(04)}

24
1 ,
an(x7 9) = ©eXp (Zk ’ ZB) {27 k[m gn] — 21 k[m (u n) (9) + 5 k[p gq} k[m (9 n) qu 9)

1
+ 5 (0 Y A" 0) kny e (uyg 0) + 0(94)}



SYM equations of motion give rise to the following 6 expansions

1

Aule0) = exp(ik) {5070 = L (w0670, -

! mn
3 1a k[m gn] <’7p 9)04 (Q’y np 9)

16

1

Ern (7m 8)@ k" k[P €61] (9 Ymrs 9) (9 P ‘9) + 0(96)}

1
mnp gy _

" 60
. 1
B Am(x79> - eXp(Zk : .CC) {gm - (U’Vm 0) - Z k[p gq} (9 Ym ,_ypq Q)
iy b (690076) (07,6) + O(8Y)}
. a i mn g\« i mn n\a
Wa(aj,@) = exp(zk ) ZE) {u - 5 k[m Sn] (7 0) + Z K (7 9) (u7n 9)

1 mn (6] y
— o7 Fm k[pfﬂ (7 ‘9) (077171)(1 ‘9) + 0(94)}

24
. . . 1
fmn(ﬂfa 9) = ©Xp (Zk : ZL‘) {2Z k[m fn] — 2 k[m (u n] 9) + ) k[p Sq} k[m (9 In] P 0)

+ é (0 Ym Y1 0) k) Ky (wy, 0) + (9(94)}
Can even give closed formulae |Policastro, Tsimpis 0603165] such as

Ay = b7 { cosh VO 1 &, + {%@}mq (6 vqu) }
kp

Ot = Q_i(‘g’Yqup@)
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III. Tree level amplitudes for open string states

Recall the tree level prescription of RNS open string amplitudes

N
"
ARNS _ < VIO o) VI () VI ) T] V(s >
j=4
e three fixed positions 21 9 3 at ¢ ghost insertions

e overall superghost charge Z]kvzl qr. = —2 adjusted to genus g = 0

In PS formalisi, also fix 3 positions V(21 2 3) and

N
AV = <V1(21)V2(22)V3(23)H >

J=4
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To compute the correlator (...), firstly integrate out the in

1

They do not have zero modes at tree level, so correlations are completely

determined by OPE singularities = can use Wick'’s theorem, e.g.

n no L . n
<Hm(Z> 11 @j(wj)> = ) <H @j<wy‘>>
j=1 j=1 7 \j=1
, Vmg Eﬁ@”)
On the RNS side, however, 3 interaction ¢ (z) Zq(w) (O‘ e
Z—W

= (" (z1) . " (2n) Eqy (w1) ... Zq, (wr))  quite tedious to get
e D = 4: Problem solved [DH, OS, StSt 0911.5168] see Daniel’s talk

e D > 4: Group theory more involved [DH, OS work in progress|



After integrating out the , deal with the zero modes in A, 6.
In RNS formalism, have the ¢ ghost zero mode prescription
(c(21) De(z) Be(z3)) = 1
PS analogoue reads
(A 0) (A" 0) (A" 0) (0 vimnp 0)) = 1

Have to pick out 8° pieces from the superfields!

12
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IV. Higher point couplings in closed string sector

Closed strings states obtained by tensoring two open string sectors

(Gmmana 90) N fm ® g’l”b ’ ¢% N qu ® gm
F(w - Z<7m1m2...mp>(w Frameeiy s y® @ '
p

.. where chirality of right movers distinguishes type II A/B:

type IIA B 3 p even

N

type 11B 15

15 p odd



On the level of amplitudes, use KLT' relations

A(j} ~ sin(ra’u) A (s,u) @ AP (u,t)

3 higher point generalization with more terms ...

AG ~ 3T ARP) @ AR (P TP
P,P’ESN

For mixed open-—closed string disk amplitudes see [Stieberger 0907.2211]

Let us now focus on open string amplitudes A?Vp

14



.. 4 point amplitude
AL = (Vi(z1) Va(zz) V3(23) / dzg Uy(z4))
dZ4 o' o't a's m 4
= [ el el el (K (A1) (M) (Adg) A,
+ Al (M) (M) (A9 W) )
dz
= [ Sl el ™l (5 (A () (\Ag) A,
+ A% (ML) (Mg) (A TWy) )

Integral yields Euler beta functlon with Well known o’ expansion.

15
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.. 5 point amplitude [Mafra 0909.5206

e | L L
AP~ /dz2 dzg T i 2" k]{ o131 Lo
21231 221734

i<j
_Lowss | Lasi | Loz Lossa L2314}
24734 F24731 #3731 203434 25

Each of the seven kinematic structures L; ;1 goes along with a different

hypergeometric integral of type

F(a,b,c,d,e) /dx/ dy 2%y’ (1—x)° (1—y) (1 —ay)°

Good news [Stieberger, Taylor]:

o' expansion under control & 3 a 2 dim basis { I, Fh}



17

The seven shorthands L represent superspace expressions like

Lasi = [AL, (M"W?) + (M) (k' - A%)] (VA (AA3) [(KH+ &) - A7
— (WH"W?) (MW7) (AAg) (AAs) + (AD - A7) ks, (A" TW) (AA4) (AA5)
+ Ap (W) (B A7) (A (AA5) — AT (") (k- AT) (AAy) (A45)
+ (kY k) (AP (VAg) (MNAY) (AA5) — (K- k) (AWW?) (VA1) (AAy) (AA5)

+ (k' B2 (AW2) (AA3) (MNAy) (MA5) + (K- k%) (A7) (AA3) (VAy) (M A5)
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... 6 point amplitude
More complex hypergeometric integrals with 6 dim basis [Oprisa, Stieberger]

Superspace expressions Lij 1mn b 6pt level:

Work in progress [Mafra, Policastro, OS, Stieberger, Tsimpis|

T
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V. Conclusion

e PS formalism is an appealing approach to superstrings overcoming some

shortcomings of RNS and GS

e SUSY tree level amplitudes can be computed in PS framework by inte-

orating out free fields in the worldsheet CEF'T

e Aim to get tree level 5pt and Gpt couplings of closed string states by

means of KLT
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Thank you for your attention !




