Calibration and Alignment of the ATLAS Muon Spectrometer at MPI

Oliver Kortner

Max-Planck-Insitut für Physik

ATLAS-Besprechung am 10.12.2007

- 1. Muon detection in the ATLAS experiment.
- 2. Muon calibration and alignment tasks.
- 3. Calibration of the muon spectrometer.
- 4. Alignment of the muon spectrometer.
- 5. Summary.

Muon detection in the ATLAS experiment

• Muon track in the muon spectrometer.

• Energy deposition in the calorimeters.

• Muon track in the inner detector.

Muon calibration and alignment tasks

Requirements for an unbiased momentum muon momentum measurements

Inner detector:	 Correct magnetic-field map.
	 Aligned inner detector.
	 Calibrated transition radiation tracker (<i>r</i>-t relationship).
Calorimeters:	• Correct measurement of the energy loss of the
	muons.
Muon spectrometer:	 Correct magnetic-field map.
	 Calibrated monitored drift-tube chambers (<i>r</i>-<i>t</i> relationships).
	 Internally aligned muon spectrometer.

• Alignment with respect to the inner detector.

Muon calibration and alignment tasks

Requirements for an unbiased momentum muon momentum measurements

Inner detector:	 Correct magnetic-field map.
	 Aligned inner detector.
	 Calibrated transition radiation tracker (<i>r</i>-<i>t</i> relationship).
Calorimeters:	 Correct measurement of the energy loss of the
	muons.
Muon spectrometer:	 Correct magnetic-field map.
	 Calibrated monitored drift-tube chambers (r-t relationships).
	 Internally aligned muon spectrometer.
	 Alignment with respect to the inner detector.

Responsibilities of the MPI muon group:

- Calibration of the monitored drift-tube chambers.
- Internal alignment of the muon spectrometer with tracks.

Regular calibration tasks

- Weekly synchronization of all drift-tube channels.
- Daily determination of the r-t relationship of each chamber.
- Daily determination of the spatial resolution of each chamber.

Basic difficulties

- The operating conditions are not uniform over an entire MDT chamber in some regions of the spectrometers. \rightarrow Non-uniformity of r(t).
- Main sources of the non-uniformity:
 - non-uniformity of the magnetic field ($\lesssim\pm0.4$ T),
 - non-uniformity of the temperature (1-2 K),
 - non-concentricity of the anode wires in the end-cap chambers ($\lesssim 600 \ \mu m$).

Calibration strategy

Application of time corrections for the non-uniformity of the operating conditions in order to keep one r-t relationship per chamber.

Calibration with muon tracks

The MDT chambers are calibrated with muon tracks. Number of required muon tracks:

- Synchronization of drift tubes: 20,000 hits per tube [^]= muon rate of ≈2 kHz.
- Determination of r-t relationships and single-tube resolution: \leq 10,000 tracks per chamber $\hat{=}$ muon rate of \approx 50 Hz.
- \Rightarrow ATLAS trigger rate of 100 Hz unsufficient.
- \Rightarrow Calibration stream with 2 kHz rate is required!

Muon calibration stream

Muon calibration stream

Status

- O.K.: online creation of the calibration stream.
- Missing: automatic transfer of the stream to the calibration centres.

Alignment of the muon spectrometer barrel

- Absolute optical alignment $\sim 100~\mu{\rm m}$ in most areas of the barrel.
- Absolute optical alignment >500 μ m in some areas where platform positions are not known with sufficient accuracy.
- Relative alignment of large barrel towers with optical sensors.
- Missing optical precision measurements for small chambers.
- Role of muon tracks:
 - Absolute alignment of large towers.
 - Alignment of small towers with respect to large towers with overlap tracks.

Alignment of the muon spectrometer barrel

Ready

- Algorithm for the initial alignment with straight tracks (toroid off).
- Algorithm for alignment with overlap tracks.

Missing

- Calibration stream for overlaps.
- Conversion of the alignment constants into AMDB format.
- Conditions database replication.

- Single muon tracks at a rate of ~ 1 kHz are required for the calibration and the alignment of the muon spectrometer.
- A muon calibration stream will be produced at the output of the muon level-2 trigger with the required rate.
- The muon calibration stream data will be analyzed in three calibration centres, Michigan, Munich, and Rome.
- The stream for the MDT chamber calibration and the initial alignment with tracks is ready.

The stream with overlap tracks is missing.

- Database replication is missing, will start in January 2008.
- If the stream could also contain inner detector and calorimeter hits, it could be used for the calibration of the entire muon reconstruction.