

The LHC as Lepton–Proton Collider: Searches for Resonant Production of Leptoquarks

Daniel Buchin, supervised by Michael Holzbock

Max Planck Institute for Physics

Tuesday 22nd March, 2022

Leptoquarks

Ar Ayait

- Typically occur in Grand Unified Theories
- Represent appealing solution to observed flavour anomalies
- Couple simultaneously to leptons and quarks
 - $\rightarrow\,$ Carry both ${\rm colour}$ and ${\rm electric}$ charge
 - $\rightarrow~$ Baryon and lepton number both non-zero
 - ightarrow Usually decay into a lepton-quark pair

A wide variety of candidates

- Scalar or vector boson
- Different electric charges possible
- Inter and intra-generation couplings y^{ij} allowed

Existing Searches at the LHC

 Pair Production (PP)

 Single Production (SP)

LQ

Resonant Leptoquark Production

- Production mode not yet probed at the LHC
- Novel approach: Utilize lepton content of proton originating from quantum fluctuations
- Lepton+(small-R) Jet final state not covered by existing ATLAS searches at run-2
- Production rate sensitive to both mass and coupling parameters

- Invariant Mass m_{lj} of lepton-jet system as key observable
- → Phenomenological studies suggest competitive sensitivity to existing PP and SP searches (arXiv:2005.06475, arXiv:2012.11474)

- Main challenge: limited support to lepton parton distribution functions in the common ATLAS event generation software
- **Private MadGraph + Pythia** configuration necessary:
 - Matrix Element generation with dedicated MadGraph version that gives access to leptons in the proton
 - Proton PDF including leptons needed
 - Parton showering done using official Pythia version, but:
 - Some "hacks" needed, i.e. replace initial state leptons with photons in the input LHE file
 - $\rightarrow\,$ Disable event check to circumvent charge conservation check

 To validate this generation setup, key kinematic properties of the LQ production are studied at the particle (truth) level

- Assume simple scalar LQ model: \tilde{S}_1 (charge -4/3, SU(2) singlet)
 - One decay mode involving a charged lepton and a down-type quark
- \blacksquare Assume only intra-generation couplings \rightarrow three processes:

Cross section for the resonant production

- LO cross sections calculated using MadGraph
- Verified that values are compatible with cross sections used by authors of phenomenological paper
- 2nd and 3rd generation suppressed due to suppressed s- and b-quark content of the proton

03/22/2022

Invariant Mass of LQ decay products

- For couplings to 1st and 2nd generation:
 - Leading (highest p_T) lepton and leading jet of the event
 - \rightarrow As expected: clear peak at the mass of the LQ resonance
- For couplings to 3rd generation:
 - Leading hadronic tau and leading b-jet of the event
 - \rightarrow Peak is smeared as expected due to neutrino in the tau decay
- Distributions smeared at high masses due to LQ decay width Γ_{IQ}

03/22/2022

Angular distance defined as:

$$\mathsf{dR}(\ell_1,\mathsf{Jet}_1) = \sqrt{\Delta\eta^2 + \Delta\phi^2}$$

Lepton and Jet well separated, as expected

03/22/2022

Kinematic Distributions

Tau p_T smeared due to neutrino from the decay

03/22/2022

- First study of the Leptoquark resonant production at the LHC
- Event generation involving lepton PDFs requires a special setup
- Setup validation through the studies of kinematic properties at particle level
 - $\rightarrow\,$ Distributions of key observables behave as expected
- Next steps:
 - Pass LQ signals through ATLAS simulation chain to allow analysis optimization at reconstruction level
 - Estimate sensitivity to these signals via a "bump-hunt" on the m_{lj} spectrum
 - Possible extension to more LQ models and final states, i.e. $e/\mu/\tau$ x light jet/c-jet/b-jet

BACKUP

03/22/2022

ATLAS detector

- Ar Ayzit
- General-purpose particle detector at the Large Hadron Collider (LHC)
- Records products of proton-proton collisions
- Standard Model (SM) precision measurements, Search for physics beyond the SM

All Leptoquarks

- Arrange different LQs w.r.t. their SM quantum numbers
- Six multiplets for scalar and vector LQs, respectively
- Chirality of interacting fermions depends on the spin and SU(2) multiplet of the LQ

(SU(3), SU(2), U(1))	Spin	Symbol	Type	F
$(\bar{3}, 3, 1/3)$	0	S_3	$LL(S_1^L)$	$^{-2}$
(3 , 2 , 7/6)	0	R_2	$RL(S_{1/2}^L), LR(S_{1/2}^R)$	0
(3, 2, 1/6)	0	\tilde{R}_2	$RL\left(\tilde{S}_{1/2}^{L}\right), \overline{LR}\left(\tilde{S}_{1/2}^{\overline{L}}\right)$	0
$(\bar{3}, 1, 4/3)$	0	\tilde{S}_1	$RR(\tilde{S}_0^R)$	-2
$(\bar{3}, 1, 1/3)$	0	S_1	$LL\left(S_{0}^{L} ight),RR\left(S_{0}^{R} ight),\overline{RR}\left(S_{0}^{\overline{R}} ight)$	$^{-2}$
$(\bar{3}, 1, -2/3)$	0	\bar{S}_1	$\overline{RR}\left(ar{S}_{0}^{\overline{R}} ight)$	-2
(3, 3, 2/3)	1	U_3	$LL(V_1^L)$	0
$(\bar{3}, 2, 5/6)$	1	V_2	$RL(V_{1/2}^L), LR(V_{1/2}^R)$	-2
$(\bar{3}, 2, -1/6)$	1	\tilde{V}_2	$RL\left(\tilde{V}_{1/2}^{\dot{L}}\right), \overline{LR}\left(\tilde{V}_{1/2}^{\overline{R}}\right)$	$^{-2}$
(3, 1, 5/3)	1	\tilde{U}_1	$RR(ilde{V}_0^R)$	0
(3, 1, 2/3)	1	U_1	$LL\left(V_{0}^{L} ight),RR\left(V_{0}^{R} ight),\overline{RR}\left(V_{0}^{\overline{R}} ight)$	0
(3, 1, -1/3)	1	\overline{U}_1	$\overline{RR}(\overline{V}_0^{\overline{R}})$	0

arXiv:1603.04993

Resolve tensions in measurements of lepton flavour universality

 Only certain LQs have the proper interaction terms to explain observed tensions in B meson decays

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \& R_{D^{(*)}}$
S_1	X *	✓	× *
R_2	X *	\checkmark	×
$\widetilde{R_2}$	×	×	×
S_3	\checkmark	×	×
U_1	\checkmark	\checkmark	 ✓
U_3	\checkmark	×	×

arXiv:1808.08179

Phenomenological Studies

Phenomenological papers on resonant LQ production:

rXiv:2005.06475

- Targets scalar LQs with right-handed couplings
- Two different final states: *eu* and *ed* (1st/2nd generation)

rXiv:2012.1147

- Targets vector LQ model: *U*₁ = (3, 1, 2/3)
- Mainly 3rd generation final states (b_Lτ_L, b_Rτ_R and ν_{τL}t_L)

03/22/2022

Invariant Masses: LHE vs Particle level

- 1st generation: leading lepton and leading jet
- For 3rd generation: leading tau and leading b-jet

After parton showering

MG's bwcutoff parameter (default: 15) steers if an intermediate particle counts as on-shell:

$$m_{LQ} - bwcutoff \cdot \Gamma_{LQ} \leq m_{\ell j} \leq m_{LQ} + bwcutoff \cdot \Gamma_{LQ}$$

- Only on-shell particles appear in LHE file \rightarrow important for truth studies (e.g. MCTruthClassifier doesn't label leptons from off-shell LQs as prompt)
- Noticed that fraction of events with no explicit LQ in LHE relatively large in 3rd gen (11 % at 2 TeV)
- Can mitigate this by increasing bwcutoff to 50 \rightarrow didn't observe notable changes in distributions

Effect of bwcutoff parameter in MadGraph

Invariant mass of leading lepton and leading jet for 3rd gen.

Invariant mass of leading tau and leading b-jet for 3rd gen.

03/22/2022

Daniel Buchin - Resonant Leptoguark Production

- Parton showered events are analysed using SimpleAnalysis software framework
- Applied kinematic requirements on truth objects to mimic acceptance at reconstruction-level:
 - Jets: $p_{
 m T}>$ 20 GeV, $\eta<$ 2.8
 - Electrons: $p_{\rm T} > 10$ GeV, $\eta < 2.47$
 - Muons: $p_{
 m T} > 10$ GeV, $\eta < 2.7$
 - Taus: p_{T} > 20 GeV, η < 2.5
 - OR of jets within $\Delta R <$ 0.4 of a lepton and electrons within $\Delta R <$ 0.01 of a muon

03/22/2022

Lepton Multiplicities

Kinematic Distributions

03/22/2022

Kinematic Distributions

03/22/2022