# Search for charged Higgs bosons in $H^+ \rightarrow Wh \rightarrow Ivbb$ decays with the ATLAS detector

DPG Frühjahrstagung Heidelberg 2022

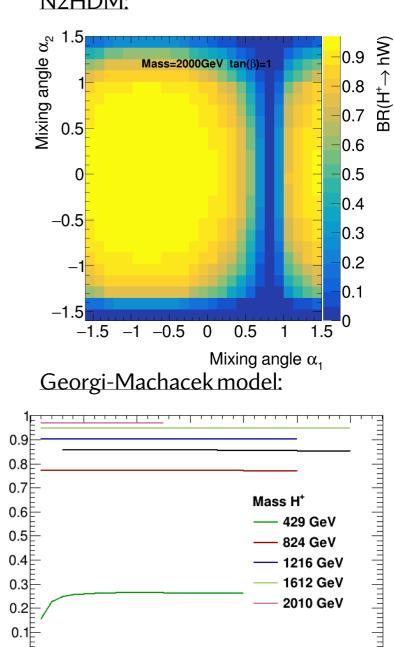
Simon Grewe

supervised by Dominik Duda

23.03.2022






**FSP** ATLAS Erforschung von Universum und Materie



MAX-PLANCK-INSTITUT FÜR PHYSIK

#### Motivation

- Several extensions of the SM predict an extended Higgs sector
  - e.g supersymmetric models
- Models with additional Higgs doublets or triplets predict electrically charged scalars H<sup>+</sup>
- Decay  $H^+ \rightarrow Wh$  (h=125 GeV SM-like Higgs) is so far not explored by ATLAS and CMS searches
  - $H^+ \rightarrow tb$  or  $H^+ \rightarrow \tau \nu$  is thought to be the main decay mode for a heavy charged Higgs boson  $[m_{H_{+}} > m_t + m_h]$
- Significant BR( $H^+ \rightarrow Wh$ ) for:
  - 2HDM(2 Higgs Doublets) scenarios in which the 125GeV Higgs boson is the heaviest CP-even scalar
  - N2HDM(2 Higgs Doublets + Singlet) [arxiv:1910.06858]
  - Georgi-Machacek model (Higgs Triplet model) [https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.015029]



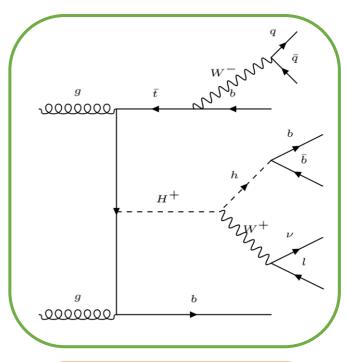
0.15

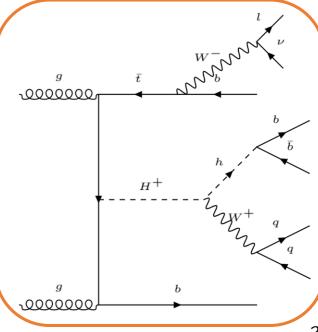
0.1

0.2

0.3  $Sin(\Theta)$ 

0.25


N2HDM:

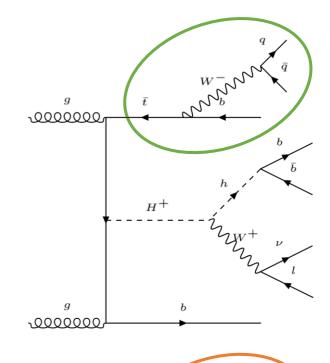

0.05

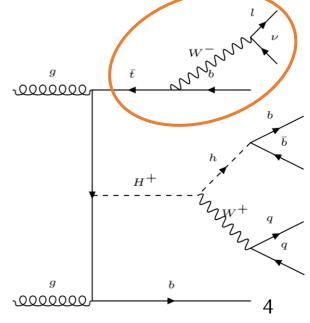
 $3R(H^+ \rightarrow Wh)$ 

### Signal Candidates

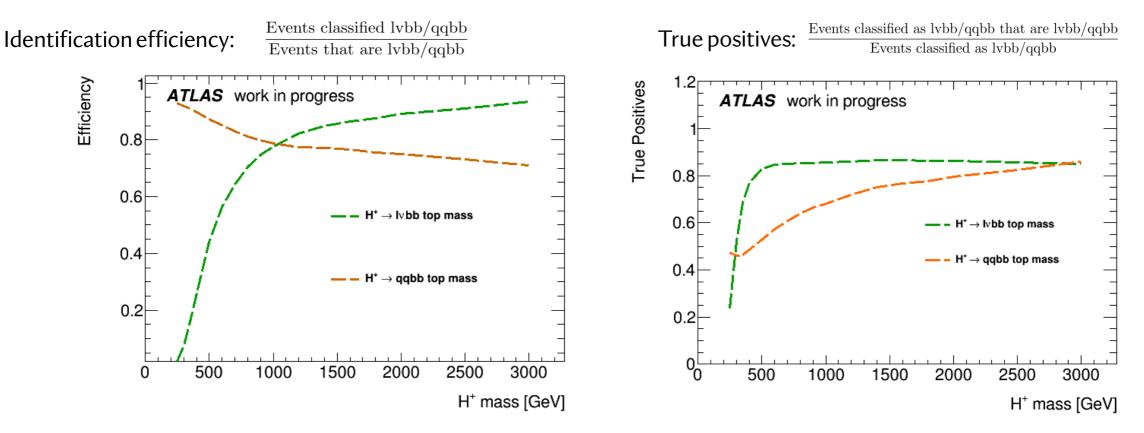
- Study  $H^{\scriptscriptstyle +}$  produced in association with t and b and decay via  $H^{\scriptscriptstyle +}{\rightarrow}Wh$ 
  - Consider only events with one lepton
  - Multiple jets (>=6, 4 of them b tagged) in the final state
  - Missing transverse energy
  - $H^+ \rightarrow Iv bb: This talk$
  - $H^+$  reconstruced from: 2 jets (h) and lepton and neutrino (W)
  - $H^+ \rightarrow qq$  bb: T 62.2 by Shubham Bansal
  - H<sup>+</sup> reconstructed from: 4 jets (h)
- Challenges:
  - Find the combination of final state products corresponding to the H<sup>+</sup> decay
  - Decided which reconstruction approach to use







# Classification of signal candidates : top reconstruction

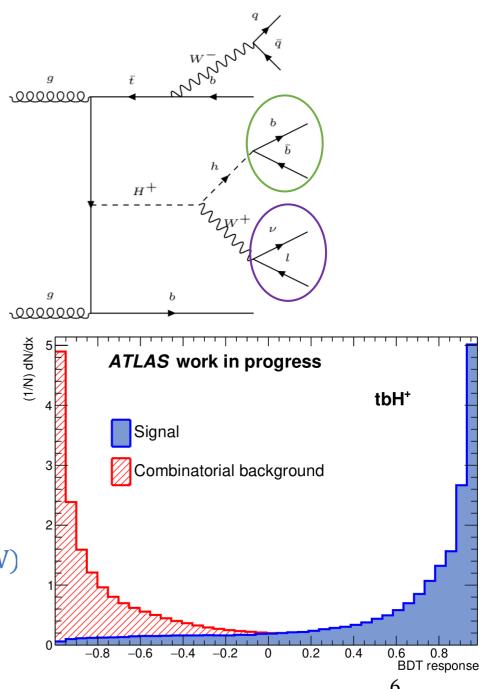
- A method to distinguish  $H^+ \rightarrow qqbb$  and  $H^+ \rightarrow lvbb$  decays is needed
- Reconstruct a leptonically decaying top  $(t \rightarrow |vb)$  from:
  - probe all lvb combinations
  - Choose the combination that minimizes:


 $\frac{|m(W^{lep}+b) - m(t)|}{0.15 \times m(W^{lep}+b)}$ 

- Classify events according to reconstructed top mass
  - m(lvb) < 225 GeV :  $H^+ \rightarrow qqbb$
  - m(lvb) > 225 GeV :  $H^+ \rightarrow lvbb$

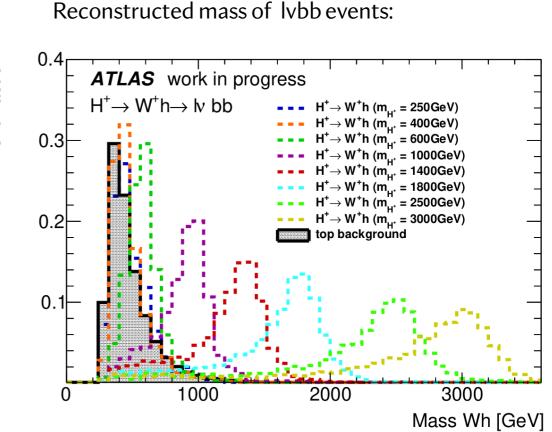





#### Signal classification performance



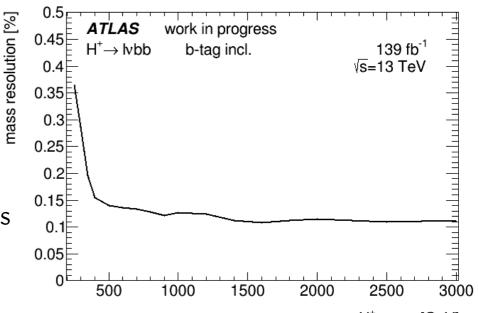
• Low identification efficiency for  $H^+ \rightarrow$  lvbb at low masses


## H<sup>+</sup> signal reconstruction

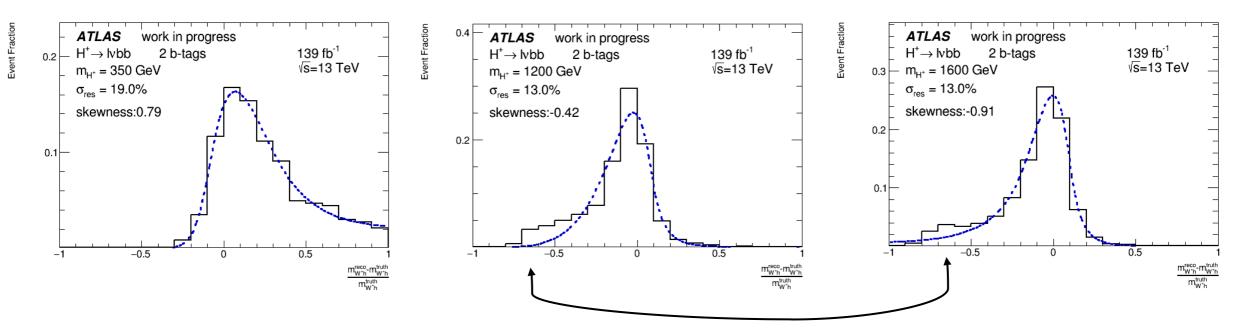
- Challenge: reconstruct  $H^+ \rightarrow \text{lvbb}$  decay
- Reconstruct W from lepton and  $E_T^{miss}$
- Reconstruct h from 2 jets
- Use boosted decision trees (BDTs) to choose the correct combination of a W boson with two jets from the h decay .
- Signal: correct jet pair and lepton neutrino matched to  $H^+$
- Combinatorial background: all the wrong combination
- Trained on sample containing several *H*<sup>+</sup> mass points
  - 250-3000 GeV
- Input variables for the training :
  - Higgs boson mass, b-tagging information of Higgs jets,  $\Delta \Phi(j, W) p_T^h/m_{hW}$ ,  $P_T^W/m_{hW}$ ,  $\Delta \eta(h, W)$



#### H<sup>+</sup> signal reconstruction: BDT application


- Evaluate BDT for all possible lvjj combinations in the event
- Choose the H<sup>+</sup>→lvbb candidate with the highest BDT score (max BDT response) as H<sup>+</sup>
- The BDT successfully reconstructs the H<sup>+</sup> decay

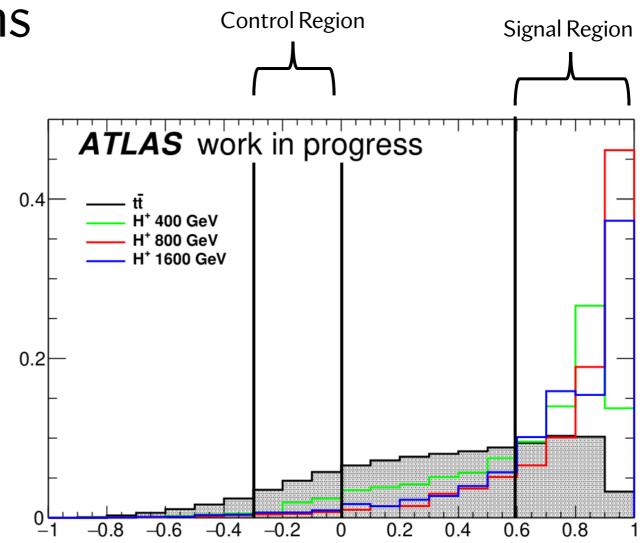



Event fraction

#### Signal mass resolution

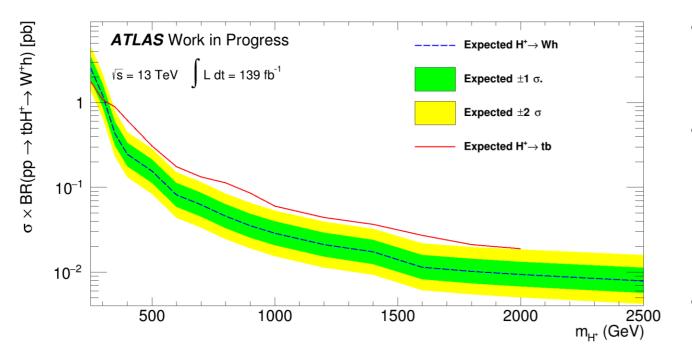
- Considering only events passing the top mass requirement
  Calculate: 
   <sup>m\_{W+h}^{reco} m\_{W+h}^{truth}}{m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}</sup>
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}}
   <sup>m\_{W+h}^{truth}
   <sup>m\_{W+h}^{truth}^{truth}}
   <sup>m\_{W+h}^{truth}^{t</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>
- Fit asymmetric Bukin function to data and take the variance as the mass resolution
- Large tails stem from wrongly identified events




H<sup>+</sup> mass [GeV]



 $H^+ \rightarrow qqbb$  events classified as lvbb

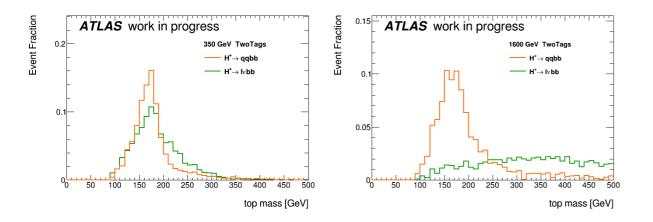

#### Signal and Control regions

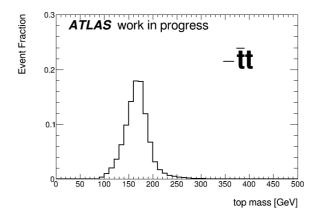
- The maximal BDT Response is distinct between the signal and the background
- Event Fraction Define Signal and Control Region in terms of the maximal BDT Response
  - Optimize for maximal/minimal  $\frac{3}{\sqrt{h}}$ , while ensuring similar kinematic properties
- Signal Region: w<sub>BDT</sub>>0.6
- Control Region:  $-0.3 > W_{BDT} > 0.0$



max BDT Response

#### Expected Limits on the tbH<sup>+</sup>cross section





- Signal Region still blinded
- Perform the maximum likelihood fit of the expected signal and background  $m_{\rm Wh}$  distribution
  - Simultaneous fit in 2 b-tag, 3 b-tag and 4+ b-tag region
- Only statistical uncertainties are taken into account
  - Statistical uncertainties (expected data stat. & MC stat.)
  - Luminosity uncertainties
  - Background normalisation
  - tt normalisation is freely floating
- Expected limits competitive with
  - $H^+ \rightarrow tb$ [https://arxiv.org/abs/2102.10076v1.]
    - Both decay channels study similar final states
    - Background contributions are also similar

#### Summary/Next Steps

- $H^+ \rightarrow Wh$  studied for the first time at the LHC
  - Complementary to other  $H^+$  searches e.g  $H^+ \rightarrow tb$
- Signal reconstruction and classification for  $H^+ \rightarrow$  lvbb was developed
  - The mass of a reconstructed t-quark is used to distinguish  $H^+ \rightarrow \text{lvbb}$  and  $H^+ \rightarrow \text{qqbb}$  decays
  - Boosted decision trees are succesfully used to reconstruct the  $H^+ \rightarrow$  lvbb decay
  - This BDT is furthermore used to define signal and control regions
  - Limits competitive with existing  $H^+$  searches
- Next Steps:
  - Take systematic uncertainties into account systematics and perform preliminary fits
  - Perform data/MC comparisons in the control region

#### Back up





12