Non-parametric Background Models for Axion Haloscopes.

Johannes Diehl¹ in collab. w. Jakob Knollmüller², Oliver Schulz¹

¹ Max-Planck Institute for Physics

² Technical University Munich, Origins Data Science Lab

- Predicted by advanced QCD
- Non-thermal production \rightarrow Dark Matter candidate
- Extremely light ($m_a \sim 10^{-5} \text{ eV}$) $\rightarrow \lambda_{dB}$ macroscopic
- (weakly) interacting with photons

Cleaned measured or simulated powerspectrum

Three components:

- Thermal noise
- Background (i.e. correlated receiver noise)
- (Signal)

Nonparametric background subtraction

- BG shape not known
- Sharp signal on smooth BG
- Simultaneous bg and signal fit not possible

Background-"free" powerspectrum

- Retain as much signal as possible
- Proceed to set limits via Frequentist or Bayesian methods

Example: SG fit, polynomial order 1, width 25

→ Bandpass filter with properties depending on order and width
→ used by many axion haloscopes

Quantify over-/underfitting

ldeal SG filter

2

Gaussian Processes

4

Normalized power excess

6

 Reproduce HAYSTAC analysis

8

data – Gaussian Process fit to background

16.03.22

Normalized Count

8

data – Savitzky-Golay

fit to background

Effect on sensitivity

- μ stays same, σ bigger
- Before: μ smaller, σ smaller
- Optimal filter has $\sigma pprox 1$
- S/N stays roughly equal

Effect on parameters

Do MCMC w/ uncorrected and corrected signal model

Parameter	Uncorrected	Corrected	True
$m_a[\mu eV]$	$45.513 \pm 1 \times 10^{-6}$	$45.513 \pm 1 \times 10^{-6}$	45.513
σ_v [km/s]	184 <u>+</u> 10	217 <u>+</u> 11	218
$\log(g_{a\gamma}[eV^{-1}])$	-22.632 ± 0.013	-22.569 ± 0.014	-22.567

- Challenge: Non-parametric background subtraction
 - Background shape not known
 - Sharp signal on smooth background
 - Simultaneous background and signal fit impossible
- Insights:
 - Tested Savitzky-Golay filter and Gaussian Processes
 → hard to improve on Savitzky-Golay filter
 - Can quantify S/N loss due to background fitting
 - Background fit introduces parameter bias
 → get rid by modifying signal model

Background samples

- Background fit is uncertain, but signal fit treats it as fixed → draw background samples to reflect uncertainty, correct exclusion limit
- SG fit:
 - 221 datapoints
 - 5 free params
- → sys. uncertainty small
- → small influence on exclusion

Method comparison

Savitzky Golay (SG) Filter

- Moving polynomial fit
- Two free parameters (pol. order, nr. datapoints i.e. width)
- Bandpassfilter
- Used by HAYSTAC, ADMX

- Machine Learning technique
- # parameters = # datapoints, but correlations fixed

Ways to do the background fit

- HAYSTAC: iterative Savitzky-Golay filter (moving polynomial fit) arXiv: <u>1706.08388</u>
- ADMX: similar with Pade filter arXiv: 2010.06183
- Savitzky-Golay (SG) filter may not be optimal for this purpose arXiv: 2003.08510
- Olaf: Piecewise polynomial fit, Fourier-Transformlike filter afterwards
- Idea: Try Gaussian Process as adaptive filter arXiv: <u>1901.11033</u>

Axion haloscopes: MADMAX

Emission coherent

Set disks such that:

- Constructive interference
- Slight resonance
- \rightarrow signal strength f

Recipe: 1. Measure 2. Change frequency (i.e. move disks) 3. Repeat!

Receiver

 λ_{dB} (roughly to scale)

- 5000 "measurements"
- variations down to 100 kHz
- Fake axion @ $f_{rel} = 5.97$ MHz (signal shape unaltered from experiment)

Noise =