Belle II results on charmless hadronic B-decays and prospects

Justin Skorupa, Thibaud Humair, Hans-Günther Moser, Markus Reif, Oskar Tittel, Benedikt Wach

Max Planck Institute for Physics
2022.03.22

MAX-PLANCK-INSTITUT
FÜR PHYSIK

Charmless B Decays

- Hadronic B decays, where $b \rightarrow u, d, s$ but not $b \rightarrow c$;
- Cabbibo-suppressed $b \rightarrow u$ trees;
- Non-negligible contribution from $b \rightarrow d, s$ penguins.
- Highly sensitive to non-SM physics;
- Probe non-SM dynamics in all three CKM angles.

Exp. challenges: $\mathcal{B} \approx \mathcal{O}\left(10^{-5}\right)$, large contribution from $e^{+} e^{-} \rightarrow q \bar{q}$ background Belle II charmless program:

- Test Standard Model using isospin sum rules;
- Investigate localized CP asymmetries in Dalitz plot of three-body decays;
- Improve precision on CKM angle $\phi_{2}(\alpha)$.

Today, showing the result of two analyses using $190 \mathrm{fb}^{-1}$ data

- CKM angle $\phi_{2}(\alpha)$ accessible in $B^{0} \rightarrow \rho^{+} \rho^{-}$;
- Measured angle is shifted: $\phi_{2}^{\text {meas. }}=\phi_{2}+\delta \phi_{2}$;

- Need $B^{0} \rightarrow \rho^{0} \rho^{0}, B^{+} \rightarrow \rho^{+}\left(\rightarrow \pi^{+} \pi^{0}\right) \rho^{0}\left(\rightarrow \pi^{+} \pi^{-}\right)$to 'remove' shift.

Belle II provides a clean environment with constrained kinematics:
Unique place to measure all three!
$B^{+} \rightarrow \rho^{+} \rho^{0}$ Experimental Challenges

Large background from $e^{+} e^{-} \rightarrow q \bar{q}$ background:

- Reduced using multivariate algorithm.

Intermediate ρ is a vector meson:

- Fit distribution of helicity angles of the π^{+}to obtain longitudinal polarization fraction f_{L}.
Broad ρ mass peak:
- 6D template fit to discriminate signal and background.

Spherical

$e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$
$|\vec{p}(q)| \approx 5 \mathrm{GeV} / c$

Jet-like
$e^{+} e^{-} \rightarrow q \bar{q}$

$B^{+} \rightarrow \rho^{+} \rho^{0}$ Result

Results:

Branching fraction:

- $\mathcal{B}=$

Longitudinal polarization:

- $f_{L}=$

Direct CP violation $\left(B^{+} \rightarrow \rho^{+} \rho^{0}\right.$ vs $\left.B^{-} \rightarrow \rho^{-} \rho^{0}\right)$:

- $A_{\mathrm{CP}}=$

World average: $A_{C P}=-0.05 \pm 0.05$

$B^{0} \rightarrow K^{0} \pi^{0}$ Motivation

$B^{0} \rightarrow K^{0} \pi^{0}$ is sensitive to New Physics. In particular, test of Isospin sum rule,

$$
2 A_{\mathrm{CP}}\left(B_{0} \rightarrow K^{0} \pi^{0}\right)-A_{\mathrm{CP}}\left(B^{+} \rightarrow K^{0} \pi^{+}\right)+2 A_{\mathrm{CP}}\left(B^{+} \rightarrow K^{+} \pi^{0}\right) \approx 0
$$

- Uncertainty dominated by $A_{\mathrm{CP}}\left(B_{0} \rightarrow K^{0} \pi^{0}\right)$;
- Experimentally very challenging \rightarrow only feasible at Belle II;
- If current central value holds, sum rule will be violated with 3σ with $15 \mathrm{ab}^{-1}$.

$B^{0} \rightarrow K^{0} \pi^{0}$ Measurement

- Perform 4D fit including $\Delta E, \Delta t$;
- Details on TDCPV presented earlier;
- $\tau_{B}^{0}, \Delta m_{d}$ and $S_{C P}$ constrained to world average to maximize precision on A_{CP}.

Results:

- $\mathcal{B}=$
- $A_{\mathrm{CP}}=$

Conclusion and Prospects

Belle II continues to prove its unique ability to measure decays with neutrals in the final state.

More to come soon from Belle ll charmless group:

- Dalitz analyses with 3-body charmless modes;
- Improved results for $B \rightarrow \pi \pi$.

