Exploring the Intrinsic Time Resolution of the SiPM-on-Tile Technology

Fabian Hummer, Lorenz Emberger, Frank Simon

Contribution to the DPG Spring Meeting, Heidelberg 22

Session T41.2: Calorimeters 1 2022-03-22

CALICE SiPM-on-Tile Technology

Scintillator Tiles:

- 30x30x3 mm³ plastic scintillator tiles
- Wrapped in reflective foil

Active Layer:

- Tiles placed directly on PCB
- Individual SiPM readout for each channel

CALICE AHCAL Large Technological Prototype:

40 fully assembled layers

- 17 mm steel absorbers
- 3 mm scintillator tiles

17.03.2022

Exploring the Intrinsic Time Resolution of the SiPM-on-Tile Technology

Scintillator Timing Study

Concept of the Measurement:

- Scintillator telescope with two coincidence triggers (Ch A+G)
- Two additional scintillator tiles (Ch C+E) to determine the time resolution as hit time difference of the channels

Hardware

- CLAWS modules: flexible readout modules for a single SiPM-on-tile setup
- SiPM: Hamamatsu S13360-1325PE
- BC408 plastic scintillator
- ESR foil as reflective wrapping
- PicoScope 6804E for fast digitization of waveforms

Full System Test Beam Measurements **1.** Particle depoists energy in the scintillator, emission of light

2. Light collection and transport to SiPM

3. SiPM creates electrical signal

17.03.2022

Exploring the Intrinsic Time Resolution of the SiPM-on-Tile Technology

Full System Test Beam Measurements **1.** Particle depoists energy in the scintillator, emission of light

2. Light collection and transport to SiPM

Inject pulsed laser beam into scintillator tile

3. SiPM creates electrical signal

17.03.2022

Full System Test Beam Measurements **1.** Particle depoists energy in the scintillator, emission of light

2. Light collection and transport to SiPM

3. SiPM creates electrical signal

Emission measurements with small scintillators

Inject pulsed laser beam into scintillator tile

17.03.2022

Full System Test Beam Measurements **1.** Particle depoists energy in the scintillator, emission of light

2. Light collection and transport to SiPM

3. SiPM creates electrical signal

Emission measurements

with small scintillators

Induce signal on SiPM with laser pulses

*

Inject pulsed laser beam into scintillator tile

Findings: Fast Hardware Response

- Laser measurement enables to study the response of CLAWS and SiPM to short laser pulses ($\sigma_t < 80$ ps)
- Findings:
 - SiPM and electronics are significantly faster than other signal parts
 - Hardware does not contribute significantly to the time resolution

Findings: Scintillation + Light Collection

Exploring the Intrinsic Time Resolution of the SiPM-on-Tile Technology

Calculating the Time Resolution

- Hit time difference between channels C and E

 → eliminate trigger resolution effects
- Time resolution is the width of the hit time distribution, divided by √2

 → Assumption: hit times are uncorrelated random variables
- Time Resolution depends on energy deposition
- Mostly a "stochastic" process of photon counting

Energy-Dependent Time Resolution

- Time Resolution depends on energy deposition
- Mostly a "stochastic" process:

 $\sigma_t = \frac{\sigma_1}{\sqrt{E}}$

• Good agreement between experiment and simulation

Tile size	Experiment σ_1	Simulation $\sigma_{_1}$
20x20	382.8 ± 0.3 ps	371.8 ± 0.8 ps
30x30	577.5 ± 0.6 ps	560.8 ± 2.3 ps
40x40	700.7 ± 0.8 ps	632.7 ± 3.4 ps

Concept of the Geant4 Simulation:

- Two scintillator tiles

 (Ch C+E) to determine the time resolution as hit time difference of the channels
- No trigger tiles since we know when the particle arrives
- Waveforms are generated from photon hit times and are analyzed in the same way as measurements
- Good agreement between simulation
 and experiment

 \rightarrow This motivates to use the simulation as a tool for probing different SiPM-ontile configurations:

- More different scintillator tile sizes
- Variable SiPM photon detection capabilities

17.03.2022

Exploring the Intrinsic Time Resolution of the SiPM-on-Tile Technology

SiPM-on-tile Model

Set of two equations connects

- Design parameters: tile size A and relative rPDE
- Performance parameters: light yield LY and time resolution σ_t

 $LY = c_1 \cdot rPDE \cdot A^{k_1}$

$$\sigma_t = c_2 \cdot rPDE^{k_2} \cdot A^{(k_1 \cdot k_2 + k_{LC})}$$

Exponents k		
$k_1 (\rightarrow material)$	-0.519 ± 0.004	
$k_2 (\rightarrow stochastic)$	-0.495 ± 0.003	
$k_{LC} (\rightarrow light collection)$	0.148 ± 0.004	

Conclusion and Outlook

- Four different measurements to disentangle the different contributions to signal creation
- Developed a Geant4-based simulation framework and verified with various measurements
- Found a mathematical model for light yield and time resolution of SiPM-on-tile configurations

Potential for further studies:

- So far only the pastic scintillator BC408 was studied in detail
- Extend analysis to different plastic scintillator materials to investigate
 - Different time constants of the scintillation process
 - Different light attenuation lengths \rightarrow should change k₁

Backup Slides

SiPM-on-Tile Timing Study (STS)

- Hardware for timing study: CLAWS boards
- SiPM: Hamamatsu S13360-1325PE
- PicoScope 6804E

- Scintillator tiles: BC408, 3mm thick
- Different tile sizes (areas *A*) studied

17.03.2022

Exploring the Intrinsic Time Resolution of the SiPM-on-Tile Technology

SiPM: Hamamatsu S13360-1325PE

Number of channels	1 channel
Effective photosensitive area	1.3 x 1.3 mm ²
Number of pixels per channel	2668
Pixel size	25 μm
Spectral response range	320 … 900 nm
Gain (typical)	7.0·10 ⁵

Information taken from: https://www.hamamatsu.com/eu/en/product/type/S13360-1325PE/index.html

Time Dependence of Light Collection

- The width of the photon arrival time distribution increases for bigger tiles
- In bigger scintillator tiles the photons travel longer paths
 - Light collection "takes longer"
- In the thesis I verified that the broadening of the photon time distribution is modeled correctly in Geant4

Exploring the Intrinsic Time Resolution of the SiPM-on-Tile Technology

Emission measurements with small scintillators

Geant 4 Simulations

- Two scintillator tiles in detector geometry

 → hit time difference
- 3 GeV electrons as primary particles
- Optical photons are tracked until they reach the SiPM → signal creation in a later step
- Scintillator emission modeled as doubleexponential function
- Time constants are determined with a measurement using small scintillator cubes

	Measured	Datasheet
Rise time	$0.73\pm0.15~\text{ns}$	0.9 ns
Fall time	$2.56\pm0.13~\text{ns}$	2.1 ns

Simulation: Waveform Generation

17.03.2022

Exploring the Intrinsic Time Resolution of the SiPM-on-Tile Technology

Some Generated Waveforms

- Generated waveforms are stored in same data format as measurements
 - Also add noise to generated signals and digitize to 8 bit
- Simulation and experiment are analyzed with the same software
- In test beam conditions, there are events with more than one particles
 - This changes the energy distribution of the signals
 - Emulated by "stacking" the waveforms of independent simulated events

Exploring the Intrinsic Time Resolution of the SiPM-on-Tile Technology

Calculating the Time Resolution (1)

Constant Fraction Discrimination:

- Get maximum amplitude of the event
- Search for the first time that the signal crosses 25%
- If the crossing is between two bins, interpolate linearly

Leading Edge Method:

• Set threshold to fixed voltage

Photon Detection Scheme: SiPM

- (1) Photons arrive at different pixels and excite an electron (photoelectric eff.)
- (2) High bias voltage \rightarrow avalanche of charge carriers \rightarrow short current spike
- (3) SiPM has only one channel → signals of all pixels added together

Important property: All pixels cause the same signal response

 \rightarrow let's use this property in data analysis

Waveform Decomposition

Calculating the Hit Time Difference

17.03.2022

Exploring the Intrinsic Time Resolution of the SiPM-on-Tile Technology

Light Yield

• Finding: $LY = c_1 \cdot rPDE \cdot A^{k_1}$

Exponents k		
k ₁	-0.519 ± 0.004	

- Instead of adjusting the PDE to experimental results, use different values
- Exponent agrees with other experimental studies of BC408

Time Resolution

• Finding: $\sigma_t = c_2 \cdot LY^{k_2} \cdot A^{k_{LC}}$

Exponents k		
k ₂	-0.495 ± 0.003	
k _{LC}	0.148 ± 0.004	

- Exponent k_2 corresponds to $1/\sqrt{n_y}$ \rightarrow photon counting
- Exponent k_{LC} accounts for time dependence of light collection

 → smaller tiles respond faster

