Conclusion and Future Outlook

# **RemoTES sensors:**

## Development of a novel detector design for Nal cryogenic calorimeters

Mukund Bharadwaj On behalf of the COSINUS collaboration

Max Planck Institut für Physik

COSINUS 16.03.2022 DPG-Frühjahrstagung 2022

MAX-PLANCK-

| Background | Design and setup | First prototypes | Conclusion and Future Outlook |
|------------|------------------|------------------|-------------------------------|
|            |                  |                  |                               |
|            |                  |                  |                               |

#### Overview

#### 1 Background

- Introduction to Direct DM searches
- Why Nal?

#### 2 Design and setup

- COSINUS Design Aspects
- Detector Optimization studies
  - Baseline design
  - remoTES conceptualization

#### 3 First prototypes

- Proof-of concept measurements
- Nal remoTES

#### 4 Conclusion and Future Outlook

- Results
- Acknowledgements

| Background | Design and setup | First prototypes | Conclusion and Future Outlook |
|------------|------------------|------------------|-------------------------------|
| 0000       |                  |                  |                               |
|            |                  |                  |                               |

## Background

| Background                         | Design and setup | First prototypes | Conclusion and Future Outlook |
|------------------------------------|------------------|------------------|-------------------------------|
| 0000                               |                  |                  |                               |
| Introduction to Direct DM searches |                  |                  |                               |
| Background                         |                  |                  |                               |



## Direct Dark Matter Detection

| Background                         | Design and setup | First prototypes | Conclusion and Future Outlook |
|------------------------------------|------------------|------------------|-------------------------------|
| 0000                               |                  |                  |                               |
| Introduction to Direct DM searches |                  |                  |                               |
| Background                         |                  |                  |                               |



## **Direct Dark Matter Detection**



| Background | Design and setup | First prototypes | Conclusion and Future Outlook |
|------------|------------------|------------------|-------------------------------|
| 0000       |                  |                  |                               |
| Why Nal?   |                  |                  |                               |

## The curious case of DAMA-LIBRA



https://arxiv.org/pdf/2110.04734.pdf

13.7 $\sigma$  confidence level!

| Background | Design and setup | First prototypes | Conclusion and Future Outlook |
|------------|------------------|------------------|-------------------------------|
|            | 0000             |                  |                               |
|            |                  |                  |                               |

## Design and setup

| Background             | Design and setup | First prototypes | Conclusion and Future Outlook |
|------------------------|------------------|------------------|-------------------------------|
|                        | 0000             |                  |                               |
| COSINUS Design Aspects |                  |                  |                               |
| Design aspects         |                  |                  |                               |

#### Experimental overview

- Cryogenic experiment.
- Target detector material: Nal
- 2 readout channels:
  - Phonons : Energy measurement
  - Light : Particle identification



Figure 1: remoTES readout scheme.

#### Drawbacks

- TES on carrier crystal coupled to Nal with an interface.
- Phonon propagation from Nal to TES severely degraded.
- Contributing factor includes acoustic mis-match between the carrier crystal and Nal.



Figure 2: Schematic of the baseline design.

Detector Optimization studies

## remoTES conceptualization

#### Possible solution

- TES on carrier coupled to absorber with a Au pad on the Nal surface via an Au wire.
- Proposed by M. Pyle et al, Optimized designs for very low temperature massive calorimeters, arXiv:1503.01200 (2015).
- Goal: Reduce the Energy threshold of the detectors as much as possible.



Figure 3: Schematic of *remoTES* readout scheme.

| Background | Design and setup | First prototypes | Conclusion and Future Outlook |
|------------|------------------|------------------|-------------------------------|
|            |                  | 000000           |                               |
|            |                  |                  |                               |

## First prototypes







| Background               | Design and setup | First prototypes | Conclusion and Future Outlook |  |
|--------------------------|------------------|------------------|-------------------------------|--|
|                          |                  | 000000           |                               |  |
| Proof-of concept measure | ements           |                  |                               |  |
|                          |                  |                  |                               |  |
| First measurements       |                  |                  |                               |  |

Prototype - 1: Si absorber (m=2.23g)

#### Key takeaways

- remotes coupling design successfully implemented!
- Baseline resolution of 87.8eV achieved.

Prototype - 2: TeO<sub>2</sub> absorber (m=2.27g)

#### Key takeaways

- remotes coupling design successfully verified!
- Baseline resolution of 193.5eV achieved.

| Background               | Design and setup | First prototypes | Conclusion and Future Outlook |
|--------------------------|------------------|------------------|-------------------------------|
|                          |                  | 0000000          |                               |
| Proof-of concept measure | ements           |                  |                               |
|                          |                  |                  |                               |
| First measu              | irements         |                  |                               |

- ★ Paper on arxiv: <u>https://arxiv.org/abs/2111.00349</u> and under publication currently.
- ★ remoTES detectors successfully verified as valid candidate for cryogenic rare event searches.

Next Step: Use a Nal absorber!

| Backgro | und |
|---------|-----|
| 0000    |     |

Conclusion and Future Outlook

#### Nal remoTES

## Nal remoTES design - v1

#### Points to note

- Nal is hygroscopic.
- Au link b/w absorber and TES must be short.
- Effectively route bias and heater lines.



Figure 6: Holder design v1 for Nal remoTES detector.

| Background  | Design and setup | First prototypes | Conclusion and Future Outlook |
|-------------|------------------|------------------|-------------------------------|
|             |                  | 0000000          |                               |
| Nal remoTES |                  |                  |                               |
|             |                  |                  |                               |

## Nal remoTES design - v1



Figure 7: close-up of Nal remoTES holder.



Figure 8: OFHC Cu Lid with the Si light detector.

| Background  | Design and setup | First prototypes | Conclusion and Future Outlook |
|-------------|------------------|------------------|-------------------------------|
|             |                  | 000000           |                               |
| Nal remoTES |                  |                  |                               |
|             |                  |                  |                               |

## Nal remoTES design - v1



| Background | Design and setup | First prototypes | Conclusion and Future Outlook |
|------------|------------------|------------------|-------------------------------|
|            |                  |                  | 00000                         |
|            |                  |                  |                               |

## Conclusion and Future Outlook

| Background | Design and setup | First prototypes | Conclusion and Future Outlook |
|------------|------------------|------------------|-------------------------------|
|            |                  |                  | 00000                         |
| Results    |                  |                  |                               |
| Conclusion |                  |                  |                               |
| CONCIUSION |                  |                  |                               |

- First experimental tests using Nal as a non-standard absorber material using the remoTES design was carried out.
- Promising first results obtained with a detector resolution of 2KeV.



| Background | Design and setup | First prototypes | Conclusion and Future Outlook |
|------------|------------------|------------------|-------------------------------|
|            |                  |                  | 00000                         |
| Results    |                  |                  |                               |
| <b>0</b>   |                  |                  |                               |
| Conclusion |                  |                  |                               |

- 2 distinct event classes observed, confirming particle discrimination.
- Preliminary bandfit using the light yield plot used to extract energy dependent quenching factor of Nal crystal at mK temperatures.



| Background<br>0000 | Design and setup | First prototypes | Conclusion and Future Outlook |
|--------------------|------------------|------------------|-------------------------------|
|                    |                  |                  |                               |
| Future Work        |                  |                  |                               |
|                    |                  |                  |                               |

- As a follow up, the resolution of the NaI remoTES plans to be further reduced to achieve even lower thresholds.
- New detector holder design incorporating a much larger light detector with a  $4\pi$  veto has been developed and is currently under testing.
- Dimensions of Au pad on the Nal absorber needs to be further optimized.



Figure 9: Nal remoTES - v2 (Si lid+beaker design)

| Backgrou | nd |
|----------|----|
| 0000     |    |

Design and setu

First prototype

Conclusion and Future Outlook

Acknowledgements

#### Acknowledgements

