

Column Density Determination for the KATRIN Neutrino Mass Measurement

DPG 2022

Christoph Köhler, Fabian Block, Alexander Marsteller

March 22, 2022

1

- 1 Column density as systematic parameter
- 2 Monitoring devices
- **3** Novel determination method
- 4 Outlook

Windowless, Gaseous T_2 Source

Column density

- T_2 retention before spectrometers > 10^{14}
- Source scattering depending on:
 - Electron path
 - Column density
 - Cross section

Integral β -spectrum

Response function: Column density

- Response function:
 - Probability of transmission of an electron with initial energy E
 - Depends on:
 - Transmission function
 - Energy loss function
 - Scattering probability in the source
- \rightarrow Precise determination of the column density needed

M. Aker et al., arXiv: 1909.06048

- **1** Column density as systematic parameter
- 2 Monitoring devices
- **3 Novel determination method**
- 4 Outlook

Tritium source monitoring: Overview

- Column density determination:
 - Photo-electrons traverse the whole beamline
 - Gas throughput sensor
 - Gas pressure sensor

- Activity detectors:
 - Fluctuations of the WGTS activity
 - High precision on a timescale of minutes

Photo-electron source

- Most precise and accurate measurement of absolute column density value
- Measures $\rho d\sigma$ (column density \times cross section)
- High rate of 18.6 keV monoenergetic electrons
- Small angular spread measurement
- Not simultaneous during β-decay

Column density scan

- Measure electron rate at different retarding potentials
- 30 min measurement
- Fit model response function to the data
- Two parameter fit:
 - Electron rate, ρdσ
- ▶ Retrieve $\rho d\sigma$ with small uncertainty
- $\blacktriangleright \ \sigma = 3.64 \times 10^{-18} \text{cm}^2$

- 1 Column density as systematic parameter
- 2 Monitoring devices
- **3** Novel determination method
- 4 Outlook

Measurement overview

Γritium β-decay:

Information	KNM1	KNM2
Duration	10.4.2019 - 13.5.2019	27.9.2019 - 14.11.2019
Tritium purity	97.5 %	98.6 %
$\# e^-$ in ROI	2 Mio	4.3 Mio

Column density:

Information	KNM1	KNM2
Photo-electron source measurements	10	11
Continuous tritium source monitoring	\checkmark	\checkmark

Tritium + Krypton operation

- Linear relation between throughput and column density
- Combination of ρdσ result from photo-electron source with throughput sensor value

- ► Since KNM4: Novel loop operation modus → Fast injection of ^{83m}Kr into gas circulation possible
- Throughput and pressure sensor no longer representative

FPD monitoring rates

- 2 monitoring points with different (E₀ - qU):
 - ▶ FPD300: 300 eV
 - ▶ FPD90: 90 eV
- Disentanglement of ρdσ variations from other time varying effects
- Obtain deviation of FPD300 and FPD90 rates to reference point
 → Relative column density evolution

Column density determination

- Calibration of relative $\rho d\sigma$ to absolute $\rho d\sigma$ with e-gun cd-scan results
- Uncertainty on mean $ho d\sigma = 0.15 \,\%$, TDR goal: $0.1 \,\%$ to $0.2 \,\%$

Summary and outlook

- Continuous monitoring of the column density
- \blacktriangleright Novel determination method with $0.15\,\%$ accuracy
- \blacktriangleright Upgrade of the existing photo-electron source \rightarrow Commissioning measurements already started

