

Compton Pola

A Compton Polarimeter in a Nano Satellite

March 16, 2022 Matthias Meier

MPP/TUM: Susanne Mertens, Matthias Meier, Michael Willers, Cynthia Glas, Katrin Geigenberger
CEA: Philippe Laurent, Ion Cojocari
Polimi: Carlo Fiorini, Marco Carminati, Pietro King, Marco Arrigucci, Lorenzo Toscano
LRSM: Martin Losekamm, Sebastian Rückerl, Peter Hinderberger, David Meßmann, Ulrich Walter
HLL: Peter Lechner

TOPICS

- Scientific motivation
- Detector system
- Working principle
- Sensitivity study
- Hardware status

Scientific motivation

Some facts:

- Black hole binary
 - Black hole (16 M_{\odot})
 - Blue supergiant star (27 M_{\odot})
- Distance: 1.8 kpc
- Strong X-ray source

Scientific motivation

Different emission states of Cygnus X-1

Paredes, Josep M. et al. "Gamma Rays from Compact Binary Systems." AIP Conference Proceedings (2008)

F. Cangemi et al., "High energy spectral study of the black hole Cygnus X-1 with INTEGRAL", SF2A, 2018

\rightarrow Continuous observation necessary

÷e-

TUT

ORIGINS

Scientific motivation

- Inverse Compton in Corona
- Synchrotron radiation (in disk/jets)
- \rightarrow Polarimetry!

Matthias Meier - The ComPol project

K PLANCK INSTITUTE

Technical University of Munich

ComPol project (Compton Polarimeter)

- CubeSat mission
 3U (10x10x34 cm³)
- Energy range 20 200 keV largely unexplored
- Continuous, long-term pointing at Cygnus X-1 1 year
- Part of the ORIGINS LRSM Laboratory for Rapid Space Missions

Detector system

Working principle

Event reconstruction

Two ways to determine the scatter angle Θ

Event selection

Two ways to determine the scatter angle Θ

1) via interaction points

2) via energy deposits

Sensitivity studies with Geant4

0.5

Simulated effects:

SNR = 0.1Detectable Polarization (99% CL) 0 0 0 6 6 7 SNR = 0.2Real spectra SNR = 0.394(background simulation) Cygnus X-1 ٠ SNR = 1.0Background: • SNR = 2.0γ, e⁻, e⁺, n, p⁺, α Sensitive to 15% polarization + Cosmogenic activation after 6 month Whole detector system + Surrounding materials Detector effects: Position resolution 특 0.1 ٠ Cygnus X-1 Energy resolution • Energy thresholds ٠ 100 150 200 250 300 50 350 400 Observation time [days] LMU TUΠ ORIGINS Technical University MAX PLANCK INSTITUTE

FOR PHYSICS

of Municl

Project schedule

Hardware ISS version

First prototype boards are ready!

Achieved:

- First operation of HLL SDD with SFERA ASIC
- Good performance verified

ComPol project (Compton Polarimeter)

CubeSat mission

- 3U CubeSat \rightarrow (10x10x34 cm³)
- IOV mission: 2023
- CubeSat Launch >2023

Observe Cygnus X-1

- 20 keV 2 MeV
- Continuous for >1year
- Spectrum & polarization

Detector system

- Compton telescope
- Stacked detector system

Technical University

of Munic

LMU

ORIGINS

MAX PLANCK INSTITUTE FOR PHYSICS

Thank you for your attention!

15

