

ASIC based readout electronics for high-purity Germanium detectors in LEGEND 1000

DPG Heidelberg 2022

Florian Henkes, Frank Edzards, Susanne Mertens and Michael Willers 24/03/2022

FOR PHYSICS

ПΠ

Table of contents

- 1. Motivation Signal Readout electronics in LEGEND
- 2. Charge Sensitive Amplifier (CSA) in LEGEND
- 3. LEGEND-1000 Berkeley ASIC
- 4. Summary and Outlook

Motivation – Readout Electronics for $0\nu\beta\beta$ Experiments

Low electronic noise

Low background

Electronics close to detector

Electronics far from detector

Low-mass front end electronics

Florian Henkes (TUM) I LEGEND

Signal readout in HPGe detectors

Florian Henkes (TUM) | LEGEND

Charge Sensitive Amplifier – LEGEND-1000

LEGEND-1000 Electronics	CSA Requirements for LEGEND-1000
 Application-Specific Integrated Circuit (ASIC) technology Combine all CSA components into low-mass chip ASIC technology Enables excellent noise performance 	 Very low electronic noise Large dynamic range (up to 10 MeV) and high linearity Important constraint radiopurity (ASIC + everything supporting the chip!) Continuous (exponential) reset, decay time ≽ O(100μs) Fast rise times: O(10 ns), bandwidth 50MHz
ASIC on low-mass PEI carrier Long-flex substrate Support rod (Cu)	HV contact Cryogenic temperatures

1cm

Florian Henkes (TUM) | LEGEND

ПΠ

L1k preliminary ASIC

ASIC built by Berkeley lab in 2020 and tested @ TUM

- o Internal, continuous reset with semiconductor technology
- o Differential output
- $\circ~$ Detector load: $\sim 1-5~\text{pF}$
- $\circ C_F = 500 f F$
- Feedback loop: effectively a capacitor and a transistor (*n-MOSFET*) in parallel

Florian Henkes (TUM) | LEGEND

L1k preliminary ASIC

- Two different regions in the decay tail
 - "Linear" region in the beginning of the tail
 - "Exponential" region in the end of the tail

Good linearity

- Cold and warm almost similar
- Under- and overshoot in the rise unclear

0

0

Florian Henkes (TUM) | LEGEND

Pulse shape is energy dependent (!)

Florian Henkes (TUM) | LEGEND

10000

LEGEND Signal Processing

Florian Henkes (TUM) | LEGEND

ТШТ

L1k preliminary ASIC – Deconvolution

- No full analytical h(t) for the MOSFET feedback of the ASIC
 - \Rightarrow every energy \Rightarrow different shape
 - \implies higher rates: circuit not fully discharged \Rightarrow different shape
 - \implies For pulses only in the "linear" region \Rightarrow model also not precise enough

ПП

The L1k Berkeley ASIC (LBNL ASIC)

L1k preliminary ASIC – What can be done?

- Current ASIC setup NOT suitable for DSP
- One possible approach:

Second stage circuit according to Pullia et.al. Paper (DOI: 10.1109/NSSMIC.2012.6551066)

 On-chip second-stage circuits to cancel "non-linear behavior" by coupling a second MOSFET to the first stage circuit

- Tested with LTSpice simulation for second-stage circuit and real data for the first stage circuit

ПШ

The L1k Berkeley ASIC (LBNL ASIC)

L1k preliminary ASIC – Second stage circuit

Summary and Outlook

L1k ASIC - Outlook

- o What comes next?
 - Collaboration with LBNL
 - Collaboration with Politecnico di Milano (Prof. Carlo Fiorini) → TUM ASIC
 - New design with second-stage circuit approach or/and
 - New design with external aGe resistor
 - Most important: Evaluation of physics performance in LAr with ICPC

ТШ

Thanks for the attention!

Florian Henkes (TUM) | LEGEND

14

BACKUP

L1k ASIC – Summary Table

	XGLab	LBNL	Future TUM ASIC
External components	Too many	Only one supply voltage (but filter capacitor needed!)	Low drop-out regulator Clean external capacitors
Reset mode	Pulsed reset	Continuous reset (but non-uniform waveforms)	 Second stage Int. high-ohm feedback External resistor
Suitable for long cables	no	yes	yes
Detector capacitance	Only up to 3 pF	Up to 5 pF	Up to 10 pF

Charge Sensitive Amplifier – LEGEND-1000

CSA Requirements for LEGEND

- Very low electronic noise: < 1 keV FWHM pulser $\approx 10e^{-}$ RMS
- Large dynamic range (up to 10 MeV) and high linearity
- Primary constraint radiopurity (ASIC + everything supporting the chip!)
 - > Small volume (≤ 0.4 mm³), bare die, wire-bondable
 - No external components: single power supply, no (close) bypass capacitors, on-chip LDO
 - Ideally no external feedback components
- Continuous (exponential) reset, decay time $\geq O(100 \mu s)$
- Fast rise times: O(10 ns), bandwidth 50MHz
- $\circ~$ Suited for detector capacitances in range $\sim 1-10~\text{pF}$
- Operational in liquid argon at 87 K
- Low power consumption (avoid bubbling of cryostatic liquid)
- $\circ~$ Driving differential signal over distance of $\sim 10~m$
- Robustness to electrostatic discharges (ESD protection VS noise)

DSP for LEGEND

Digital Signal Processing – Why we need certain decay shape?

DSP for LEGEND:
 Baseline correction
 Waveform smoothing
 Pole-Zero correction
 Signal shaping (trapezoidal)
 Energy reconstruction
 Further analysis:
 Pulse-Shape Analysis, Drift-Time correction etc.

Deconvolution

Digital Signal Processing – Deconvolution

Convolution

Every waveform = convolution of the charge input signal coming from the detector with the response function of the RC-feedback (*and gained according to the CSA properties*).

Deconvolution

Infinite-Impulse-Response Filter (IIR) which corresponds to the inverse transfer function of the CSA while only require the decay time $\tau = RC$

Charge Sensitive Amplifier (CSA)

Florian Henkes (TUM) | LEGEND

Charge Sensitive Amplifier (CSA)

What is the problem?

Realistic CSAs are frequency dependent: $\circ A_{\omega} = g_m \left(\frac{1}{R_L} + i\omega C_0\right)^{-1} \begin{array}{l} A_{\omega}: \text{gain} \\ g_m: \text{transconductance} \\ R_L: \text{ series resistance} \\ C_0: \text{ parallel capacity} \end{array}$

- For low frequencies: gain constant
- For high frequencies: drops off linearly First need to "load the capacitance"
- $\circ~$ A JFET before the OpAmp cancels this out
 - At high frequencies:
- ➡ JFET helds voltage "constant" while following the current coming from the detector
 - Acts as a "current source" for OpAmp
 - Lowest shot noise of all available components

$$\left(\frac{S}{N}\right)^{2} = \left(\frac{S}{N_{1}}\right)^{2} \frac{1}{1 + \left(\frac{N_{2}}{A_{1}N_{1}}\right)^{2}} \qquad \text{ENC}^{2} = \alpha \frac{1}{\tau_{s}} \frac{2k_{\text{B}}T}{g_{m}} C_{tot}^{2}}{\sum_{\text{series: ENC}_{p}^{2}} + \beta A_{f} C_{tot}^{2}} + \gamma \left(\frac{eI_{tot} + \frac{k_{\text{B}}T}{R_{F}}}{\sum_{\text{parallel: ENC}_{1/f}^{2}}}\right) \tau_{s}$$

L1k preliminary ASIC – Rise Times

- Rise Times (10%-90%) in the desired range (< 100ns) for the warm and the cold setup
- Rise Time depends linear on the input voltage (~ energy)

Neutrinloess double beta $(0\nu\beta\beta)$ decay

 $T_{1/2}^{0\nu}$: Decay half-life $M^{0\nu}$: Nuclear matrix element

 $G^{0\nu}$: Phase space factor

$$egin{aligned} \langle m_{etaeta}
angle &= | \sum_{i} \mathcal{U}_{ij}^2 m_i | & 10^{-4} igsquare{10^{-4}}{10^{-4}} igsquare{10^{-3}}{10^{-3}} igsquare{1}{10^{-4}} & 10^{-3} igsquare{1}{10^{-4}} \ & m_{ ext{light}} \ & = |\cos^2 heta_{12} \cos^2 heta_{13} m_1 + e^{2ilpha} \sin^2 heta_{12} \cos^2 heta_{13} m_2 + e^{2ieta} \sin^2 heta_{13} m_3 | \end{aligned}$$

Neutrinoless double-beta decay

Double beta decay <u>without</u> emission of two anti-neutrinos

 \rightarrow Neutrinoless double beta decay (0v $\beta\beta$ decay)

LEGEND Sensitivity

