A background study via simulations for the ComPol CubeSat experiment

Cynthia Glas

Master student at TUM KATRIN Group Prof. Mertens

	The ComPol mission
**	Cosmic Radiation Background
	Geant4 simulation
	Simulated geometries
	Results: Shielding efficiency and Activation background
Ø	Orbit dependent background

The ComPol mission

The ComPol CubeSat

CubeSat Mission

Remember Matthias' presentation:

Scientific motivation

Detector system:

- Silicon Drift Detector (SDD)
- CeBr₃ Calorimeter

Working principle:

- Compton event reconstruction via energy and position detection
- Event selection via Cuts und the scatter angle + energy ROI
- \rightarrow MDP and SNR

Cosmic Radiation Background

Cosmic radiation in LEO

Technische Universität München

- Spallation
- Neutron capture
- Inelastic scattering (p and n)
- Excitation due to gamma rays
- Electron capture

Radioactive

decays

A

Geant4 simulation

- Monte Carlo simulation
- Based on C++

- Generate a geometry
- Set the physical properties (Physics Lists)
- Choose a particle source and spectrum
- Data analysis was done with python

8

Geometries

Technische Universität München

Results: Shielding efficiency and Activation background

Shielding efficiency ...

More material (close to the detectors) → Additional background due to cosmogenic activation

VS.

Shielding efficiency ...

Performance of different Shielding Geometries

... and Activation

MAX PLANCK INSTITUT

... and Activation

MAX PLANCK INST

MAX PLANCK INSTITUTE FOR PHYSICS

TAp. Dg > 1

Ø

Orbit dependent background

23.03.2022

Ø

Area above the south atlantic where Earth's inner Van Allen radiation belt comes closest to Earth's surface

 \rightarrow increased flux of energetic particles in this region

Count rate for 1 Day in Orbit

Cynthia Glas -- master student TUM

Ø

SNR before and after applying the SAA background

Ø

MDP before and after applying the SAA background

Summary

- Different Geometries simulated with Geant4
- SNR, MDP, and Activation background investigated:
 - With cosmic radiation spectrum
 - -> The "Shielding Case" performs best
 - South atlantic anomaly added
 - -> "Shielding Case" leads to no significant improvement
- Outlook:
 - Simulate SAA background on "Close Plate" geometry
 - Try Graded shielding: Lead and Copper

Thank you for your attention!

Do you have questions?

