Projects of the Electronics Division

Project Review 2007

- Projects in 2007
- Status of Selected Projects
 - HEC-II
 - MAGIC-I Summing-Trigger
 - MAGIC-II Camera

Projects in 2007

- Main Projects
 - HEC Hadronic Endcap Calorimeter (EA, EE)
 - HEC-II HEC Electronics Upgrade for the SLHC (EA, EE)
 - MAGIC-I Air Cherenkov Telescope Camera (EE, EP)
 - MAGIC-II Air Cherenkov Telescope Camera (EA, EE, EP)
 - MDT Muon Drift Tube Chambers (EA)
 - MDT-II MDT Electronics Upgrade for the SLHC (EA, EE)
- Additional Projects
 - Cresst (EP)
 - Gerda (EA, EE, EP)
 - H1 Jet-Trigger at DESY (EE)
 - ILC / SiPM (EE)
 - Muon Cooling (EP)
 - SCT (EA)
 - Support for the Semiconductor Laboratory (EP)

Group Naming

- EA: Elektroanlagen
- EE: Elektronik Entwicklung
- EP: Elektronikproduktion

Ceramic Board for HLL CCD-Chip

Upgrade of the Hadronic Endcap Calorimeter (HEC-II)

SLHC luminosity upgrade leads to increased particle rates

- -> Improved Amplifiers for the ATLAS-HEC (Factor 10 higher Radiation Hardness)
 - -> Reduced Structure Size in Amplifier Chips (e.g. 250nm or less)
 - -> Possible use of a different Technology (SiGe instead of GaAs)

Some Specifications for the new Amplifier:

Radiation Hardness	Neutrons	1.5 ·10 ¹⁵
	Protons	2 ·10 ¹²
	Gammas	50 kGy
Power Consumption		< 250mW/Chip
 Dynamic Range 		1 0 ⁴
 Input Impedance 		$50\pm 2~\Omega$
 Gain Variation 		< 2%
• Xtalk		< 2%

Project has started with two Technology Partners:

- Institute for Semiconductor Physics (Frankfurt/Oder) (SiGe)
- Triquint (GaAs)

HEC-II / Some Simulations and Measurements

Chip of the HEC-I Amplifier:

(Used as a Reference)

Simulation of the Package: Current Distribution @140MHz

Behaviour of the HEC-I Chip with Package (@ Room Temperature):

HEC-II / Radiation Test

- Now: Preparing the Setup for the Radiation Test
- Radiation Test at a Cyclotron in Rez (near Prague)
- Selecting the Technology from Results (SiGe or GaAs)
- Starting the Chip (Amplifier) Development

MAGIC-I Summing-Trigger / Principle

- Provide the smallest possible FWHM of the analog pulses
- Clip the analog signal at certain level to avoid big amplitudes from afterpulses
- Sum several clipped signals -summing patch. Showers will pile-up, low signals are not clipped !
- Overlap summing patches for uniform camera coverage.
- To issue a trigger: Apply thresholds to patches -not to individual pixels!

~250 inner pixels

~24 overlapping clusters

MAGIC-I Summing-Trigger / Realisation

- Start (Development): April 2007
- Fabrication and Test:
- Installation in La Palma:
- Taking First Data:

Some Specs:

- Bandwidth:
- Deadtime of Clipping Stage:
- Input dynamic range:
- Adjustable clipping level
- Adjustable Gain
- Differential input
- adjustable discriminator level

Input Signal 2.3 ns --> diskriminator input : 2.6 ns

200 MHz (1ns risetime) 1.5 ns +-1.5 V

June – August 2007

September 2007

October 2007

MAGIC-II Overview

Main Task:

- Development of Camera Electronics
 - Signal Transmission System
 - Camera Control System
 - Test Signal Generation
 - Power Distribution

<u>Camera</u>:

• 1039 Pixels

(Photomultipiers + Signal Transm.)

- 7 Pixels are grouped into a Cluster
- Each Cluster has its own Test Pulse Generation and Control System

MAGIC-II Signal Transmission

Frequency (Hz)

(Possible better Hadron/Gamma Separation)

Actual Bandwidth is approx. 700MHz (limited Bandwidth for Noise Reduction)

MAGIC-II Pixel / Electrical Characteristics

Amplifier Response to a 2.4 ns Pulse

Response of the Signal Chain to a Short Current Pulse

MAGIC-II Cluster / Some Impressions

7 Pixels @ Top of a Cluster

Slow Control and Fiber Connectors

Cluster (Closed Body)

MAGIC-II Camera Support Systems

Low Noise Power Supply (5V)

Shutter Control System

MAGIC-II Cluster / Some Specs

- Cluster: 7 Pixels + 1 Slow Control + 1 Test Pulser
- Bandwidth ~ 1 GHz (700 MHz after Reduction)

Thank You Very Much for Your Attention

