MAGIC Unveiling the VHE γ Ray Sky

Razmick, Mirzoyan Max-Planck-Institut für Physik, München (Werner-Heisenberg-Institut)

The Cosmic Ray Spectrum

Hillas, 2006

Energies and rates of the cosmic-ray particles

Project Review

December 17, 2007

2

Atmospheric Imaging Cherenkov Telescope

Cherenkov light from γ showers:

~10 photons/m² @ 100 GeV
→ scarce photon statistics
 MAGIC @ 100 GeV →
200p.e.

Gamma/Hadron separation

MC Simulation of Shower

Hadron Rejection by Image Shape + Orientation ~ 99.9 %

The MAGIC collaboration

- International collaboration: 20 institutions, ~180 members
 → still increasing
- Germany: MPI Munich, Humboldt Berlin, DESY-Zeuthen, Dortmund, Wuerzburg
- Italy: Padova, Siena-Pisa, Udine (INFN), INAF
- Spain: IFAE, UAB, UB, ICE, IAA, IAC, UC Madrid
- Switzerland: ETH, Finland: Tuorla
- Poland: Lodz, Bulgaria: Sofia, Armenia: Yerevan, USA: UCDavis

MAGIC: a pioneering telescope <u>new threshold & technology standards</u> The key elements are:

• 17 m Ø reflector, Al mirrors

- CF frame, fast rotation 180°/50s
- Active mirror control
- 577 pixels, ~ 2.0° FOV camera (3.5°geometrical)
- Analogue signal transport via 162m long optical fibres
- 2 GSample/s readout

Mirzoyan, R.: Highlights of MAGIC Project Review

December 17, 2007

The MAGIC Project

MAGIC-I performance :

- Fast rotation for GRB < 50
 secs
- Trigger threshold ~ 50 GeV
- Sensitivity ~ 1.6 % Crab (50 h)
- Angular resolution ~ 0.1°
- Energy Resolution 20-30 % MAGIC-II: under construction, be completed (& inaugurated) fall (September) 2008
- M-I + M-II: 2-3 times higher sensitivity
- Effectively lower the threshold energy towards 40 GeV
- Details in the next talk by F. Goebel

December 17, 2007

Mirzoyan, R.: Highlights of Project Review

FADC	
 By using multiplexing of analog signals in optical fibres we developed at MPI a system allowing one to read out 16 signal channels in 1 channel of commercial ultra-fast FADC (packing the 16 channels in a sequence) 	
With a bank of 40 channel FADCs from Acqiris we are reading out 640 (576-signal) channels of the MAGIC-I imaging camera.	
This provides measurement of the second o	
This ultra-fast readout allowed us, in the 1st	

Mirzoyan, R.: Highlights of MAGIC

Project Review

Ch2

100mVΩ M 40.0ns A Ch4 J 690mV

1→▼ 485.400ns

time, to strongly reject background and thus to increase the sensitivity of the telescope by 40 % @ high energies and by 70% @ low energies ! (quasi-stereo 3D-mode)

December 17, 2007

9

17 May 2004 10:03:40

Origin of cosmic rays

> Mirzoyan, R.: Highlights of MAGIC **Project Review**

& relativity

Dark matter

15 Time after the Big Bang in 10⁹ years 0

Cosmology

December 17, 2007

A major test on the accelerated <u>particle type and process</u> is to measure the very low energies < 100 GeV where the left 2 mechanisms much differ.

December 17, 2007

Mirzoyan, R.: Highlights of MAGIC Project Review

Galactic Source Observations

Crab Nebula

Galactic Center

Cyg-X1 binary Discovered by MAGIC

Cas A

HESS J1834 ¹³CO cloud

J2032+4130

LSI+61 303 Binary Discovered by MAGIC Discovered by MAGIC

Mirzoyan, R.: Highlights of MAGIC Project Review

December 17, 2007

12

Single-sided jet (microblazar?) resolved at milli-arcsec scales with VLBA in hard state. Opening angle < 2°, bulk velocity is β > 0.6c

0

Gallo et al. 2005, Nature

Cyg X-1. On the other hand, it is intringuing that Cyg X-1 does appear surrounded by several clumps of extended emission. All these clumps also appear in maps made from the individual visibility data sets. At a marginal level, their disposition reminds an elliptical ring-like shell with Cyg X-1 offset from the center by a few arcminutes.

- CygX-1 is the best established candidate for the stellar mass black hole (BH) and one of the brightest X-ray sources in the sky.
- It is located at ~2.2 kpc and is composed of 21 ±8 M_o BH orbiting a companion of 40 ±10 M_o
- It was observed by MAGIC for a total of 40h on 26 nights

December 17, 2007

13

Cygnus X-1

Albert et al. 2007, ApJ 665, L51

Cygnus X-1

 Source location compatible with the position of Cygnus X-1 and exclude radio ring

• 4.9σ for the second halve of the night (at phase 0.9-1.0, when the black hole is behind the star)

 For the 1st time we have found experimental evidence that a galactic stellar mass BH is producing VHE γ rays
 This is also the 1st evidence that the VHE γ rays are produced in an accreting binary system.

Crab Nebula (PWN) Gamma Ray Signals from Crab ~ 0.4Hz

December 17, 2007

 Extended the spectrum from 400 GeV down to ~ 70-80 GeV.

 Hint on peaked distribution with peak @ 77 ± 45 GeV

Mirzoyan, R.: Highlights of MAGIC Project Review

Crab Pulsar Observations

Optical light curve of Crab Pulsar observed by MAGIC

Central pixel readout optical light intensity (not Cherenkov light)

Some 2.9 σ 'excess' at EGRET phase at ~65GeV

-0.5

States 45800 45600

45400

45200 45000 44800

44600 44400

44200

44000

-1

Micro-quasar LS I +61 303

X-Ray Binary System, Radio jet; 26.5

Quasar

Microquasar

TeV Binary System LS I +61 303

- Discovered by MAGIC in 2005
- The average emission has a maximum at phase 0.6.
- No hint for intra-night flux variations (observed in radio and x-rays)
- Marginal detections occur at lower phases.

Mirzoyan, R.: Highlights of MAGIC Project Review

December 17, 2007

19

- Similar behaviour as before
- Maximum flux detected at phase 0.6-0.7
- Exception one point at Φ~0.85

Mirzoyan, R.: Highlights of MAGIC Project Review

UV photons from the companion star suffer inverse Compton scattering by the same population of non-thermal particles, leading to emission in the GeV-TeV energy range.

(Dubus 2006, A&A 456, 801; Maraschi & Treves 1981).

A possible scenario comes from the interaction of the relativistic wind from a young pulsar with the wind from its stellar companion, as in PSR B1259-63. A cometary nebula of radio emitting particles is formed. It rotates with the orbital period of the binary system. We see this nebula projected (Dubus 2006, A&A 456, 801).

Mirzoyan, R.: Highlights of MAGIC Project Review

The average energy spectrum from 200 GeV to 4 TeV is well fitted by a power law with spectral index α = -2.6 ± 0.2 (stat) ± 0.2 (syst)

The luminosity above 200 GeV is ~7 x 10³³ erg s⁻¹ (if distance ~2 kpc)

It is more luminous at TeV energies than at X-rays

Spectral stability: both cycles (over 1 year) / different measured phases / days

December 17, 2007

Mirzoyan, R.: Highlights of MAGIC **Project Review**

Sidro (MAGIC Col.) ICRC 2007

10⁴

of binary systems @ VHE γ Period 10 energies is not an exception but rather a "rule"?

LS 5039: H.E.S.S.

Project Review

December 17, 2007

Highlights in extra-galactic source observations

Mrk421 (0.031)

Mrk501 (z=0.034) Very fast flare

1ES2344 (z=0.044)

Mrk180 (0.045) MAGIC discovery

1ES1218 (z=0.18) MAGIC discovery

BL-Lacertae (0.069) MAGIC discovery

(psf) 4.5 5.5 5.5 5.5 7 12.84 12.86 12.88 12.9 12.94 12.96 12.98 13 13.02 13.04

3C 279 MAGIC discovery

December 17, 2007

Mirzoyan, R.: Highlights of MAGIC Project Review

PG 1553 (Z>0.25)

MAGIC discovery

Absorption of γ's in Universe

Optical trigger: MAGIC observations in March-May 2007, 18.7h of data, clear signal (6.2 σ): **discovery** ! ApJ Lett. 667 (2007),

arXiv:0706.4435

- Soft spectrum: Γ=3.3 after deabsorption
- 10% crab at 200 GeV
- No significant variability
- 3 σ in 2006 data. If it was due to genuine signal, then 40% lower flux then in 2007

Mrk-501 Flares on June 30 and July 9 in 2005

Light curve in May-July 2005

Intra-night light curve in 2mins bin

Energy Spectra in pre-burst state and burst state

Mrk-501: July 9 outburst Time lag for higher energies

This time lag may be explained by the particle acceleration process.

IF Photons at different energies were emitted simultaneously 30 sec. $\Delta T = 4 \pm 1 \text{ min}; \Delta E \sim 1 \text{ TeV}$ $E_{QG} = \frac{L}{c} \cdot \frac{\Delta E}{\Delta t} = (0.6 \pm 0.2) \cdot 10^{17} \text{ GeV}$

Our data provides a stringent lower limit of Q.G. energy scale: $M_{QG} > 0.26 \cdot 10^{18}$ GeV at 95% CL. The Q.G. energy scale is estimated to be $10^{17} \sim 10^{19}$ GeV. Mrk501 BH ~ $3x10^{9}$ Msolar \rightarrow Rsh/c ~ $3x10^{4}$ sec=10 light hours Order of 100sec time variation requires extreme jet / blob emission of Γ -factor of 100. Perhaps new theory/explanation is necessary.

Mirzoyan, R.: Highlights of MAGIC Project Review

December 17, 2007

PG 1553 (z>0.25 unknown)

Very Soft energy spectrum

Due to EBL attenuation

or

nature of SSC mechanism MAGIC \rightarrow Z < 0.42

(D.Mazin and F.Goebel)

December 17, 2007

3C 279 (z = 0.536)

- EGRET brightest AGN ٥
 - Gamma-ray flares in 1991 and 1996
 - Apparent luminosity ~ 10⁴⁸erg/s
 - First time variation □ □~ 6hr in 1996 flare
- Typical OVV quasar (Optically violent variable) Radio measurements over 7 years
 - Categorized as a FSRQ (Flat Spectrum Radio Quasar)
- Superluminal motion, γ~ 20~30
- z = 0.538, Ld ~ 3Gpc

optical

GRB observations by MAGIC

Project Review

Uniformity

Duration of Burst

Capability: slew to any position in \leq 50 sec _{(an, R.: Highlights of MAGIC}

36

 GRBs are the most energetic

phenomenon in the Universe, with 10^{51} erg released in few sec. (equivalent to explosion of ~ 10^{30} atomic bombs)

- Most of long duration (> 2s) class events seem to be related
- to the collapse of massive (> 40-50 M_{o}) stars in the last stages of their evolution
- \Rightarrow formation of a BH and a jet
- The short duration class (< 2 s) events seem to be related to mergers of

December 17, 2007

Mirzoyan, R.: Highlights of MACOMPACT (neutron stars) Project Review binary systems

Observation of GRBs

MAGIC follow-up observations

M. Garez	and the second se					
@ София	Redshift	T ₉₀ [s]	Start data taking [s]	Observation time [min]		
GRB060522	5.11	69	2752	13		
GRB060602b		9	4230	26		
GRB060825		8.1	57	33		
GRB060904a	-	80	5434	119		
GRB060912	0.94	5	24291	18		
GRB060926	3.21	8	12834	23		
GRB061028		106	169	100		
GRB061110b	3.44	128	715	59		
GRB061217	0.83	0.2	786	66		
GRB070411	2.95	101	2652	128		
GRB070412		34	701	124+180		

				Ap	1 667, 35
GRB	to	Δt_{alert}	Δt_{oss}	† ₉₀	<za></za>
050421	04:11:52	58 s	83 s	10 s	50°
050502a	02:14:18	18 s	990 s	20 s	42°
050505	23 Typi	55°			
050509a	01	50°			
050509b	04	10+3	US	13 s	49°
050528	04:06:45	43 s	77 s	11 s	50°
050713a	04:29:02	13 s	40 s	27 s	49°
050904	01:51:44	82 s	92 s	225 s	20°
060121	22:24:54	15 s	583 s	25	42°
060203	23:53:35	171 s	185 s	83 s	40°
060206	04:46:53	16 s	25 s	11 s	10°

Mirzoya

SWIFT-BAT: E = 15-350 keV

125 G

2000

December 17, 2007

From EGRET (all years) to GLAST (1 year)

Mirzoyan, R.: Highlights of MAGIC Project Review

E>100 MV

Outlook : the next 7-10 years Next generation VHE γ ray Observatory: CTA

Cherenkov Telescope Array

1000's of sources will be discovered

MAGIC Phase II (MAGIC-I + MAGIC-II) in 2008 50-100 sources will be discovered

Summary: coming close to solve the puzzle of cosmic rays !

- We detected γ ray emission from > 22 sources, some 30 publications in peer reviewed journals
 - New discovered sources
 - TeV Binary LSI +61 303
 - Cyg X-1
 - IC 443
 - LBL (Low peaked BL Lac Objects) BL-Lacertae
 - 1ES 1011 +496
 - 3C 279
 - 3C XYZ
 - 1 O.....
 - Most new extra-galactic Blazars show steep spectra
 - Constraints on EBL → Cosmology (star and galaxy formations)
 - Flaring sources
 - Detail of flare, intra night light curves, evolution of spectra
 - Limit on Quantum Gravity Scale
 - GRB observations
 - > 10 GRBs were observed and 2 were in prompt phase, but no positive results

• The golden age of the VHE γ hunting of MAGIC has started !

Number of sources vs. year

Kifune Plot

42