ZEUS Status Report

MPI Project Review December 17 - 18, 2007

HERA Performance

ZEUS

MPI Munich

Burkard Reisert

MPI Project Review 2007

The MPI ZEUS Team

ZEUS

Responsible Director:

Allen Caldwell

Project Manager:

Iris Abt

Research Associates:

Daniel Kollár, Burkard Reisert, William Schmidke

Guests/Associates:

Vladimir Drugakov (DESY Hamburg), Prabhdip Devgun (U Punjab), Julia Grebenyuk (U Hamburg), Manjit Kaur (U Punjab), Wolfgang Lohmann (DESY Zeuthen), Jason Schwarz (McGill U), Frank Sciulli (Columbia U), Shima Shimizu (U Tokyo), Inderpal Singh (U Punjab), Amir Stern (Tel Aviv U)

Functions within ZEUS collaboration:

- D. Kollár: Convener FL-Group;
 I. Abt: Convener High Q² & Exotics
 I. Abt: Designated ZEUS Physics Coord
- I. Abt: Designated ZEUS Physics Coordinator

Burkard Reisert

MPI Project Review 2007

Local Organizing Committee of DIS 2007 XV Workshop on Deep Inelastic Scattering Combined effort of H1 and ZEUS groups

Hardware Responsibilities:	
 Luminosity Spectrometer CAL Readout ZEUS detector is being decommissic 	W. Schmidke, V. Drugakov W. Schmidke oned
Analyses:	
Luminosity Measurement	V. Drugakov
 F2 at high y (HERA High Energy Run) → preliminary for DIS07, ongoing 	D. Kollár, B. Reisert
■ F2 at high y and FL (HERA Low Energy → ongoing, aiming for preliminary for	y <mark>Runs B. Reisert, D. Kollár</mark> DIS08
■ Photon-proton total cross sections → new analysis, ramping up	W. Schmidke
■ Inclusive Leading Neutrons in DIS and → published in Nucl. Phys. B, July 200	γp W. Schmidke 07
 Di-jets in γp with leading neutron tag → editorial board process started 	W. Schmidke

Burkard Reisert

MPI Project Review 2007

Luminosity Spectrometer

Technique Process: $ep \rightarrow e'p\gamma$

MPI Munici

Burkard

Reisert

MPI Project Review

2007

- Accurately calculable cross-section
- Sufficient rate for real-time monitoring Method: γ-measurement downstream
- Photons follow electron direction
- e are magnetically separated

Experimental Setup

- Detects e⁺e⁻ -pairs from photon conversions in γ-exit window (~9%)
- Away from synchrotron radiation plane
- Away from bremsstahlung photons
- Alternative measurement of γ in photon calorimeter

Luminosity Measurement

Two independent luminosity monitors: Luminosity Spectrometer (since 2003) & photon calorimeter

Dedicated study to understand numerous systematic effects:

theory

- 0.5% (working with theorists on update) aperture and detector alignment

- 1% (will profit from ongoing acceptance study window conversion

- 2% (will profit from ongoing acceptance study) **correction**

- 0.5%

X-position

- 1.2% (will profit from ongoing acceptance study) all other systematics checked

- negligible

Total error on Zeus luminosity:

good prospects for further improvements

Deep Inelastic Scattering

Burkard Reisert

MPI Project Review 2007

$\frac{d^2 \sigma^{e^{\pm}p \to e^{\pm}X}}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \underbrace{\left(1 + \left(1 - y\right)^2\right)}_{Y_{\pm} = 1 \pm \left(1 - y\right)^2} \cdot \left(F_2\left(x, Q^2\right) - \frac{y^2}{Y_{\pm}}F_L\left(x, Q^2\right) \mp \frac{Y_{\pm}}{Y_{\pm}}xF_3\left(x, Q^2\right)\right)}_{\widetilde{\sigma}: \text{ Reduced cross section}}$

Neutral current DIS cross section expressed by structure functions:

Structure Functions

- Proton Structure FunctionF₂
 - $F_{2} = \sum_{q} A_{q} \left(Q^{2} \right) \left[xq + xq \right], \text{ at low } Q^{2} \colon A_{q} \left(Q^{2} \right) = e_{q}^{2}$ $A_{q} \left(Q^{2} \right) \colon \text{ Electro weak coefficient function}$

F₂ is directly sensitive to quark densities, gluons are accessible only through scaling violations

Longitudinal Structure Function F_L
 Quark Parton Model (spin ½ partons only): F_L=0

QCD:
$$F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} \sum_q e_q^2 \left(xq + xq \right) + 8 \sum_q e_q^2 \left(1 - \frac{x}{z} \right) zg \right]$$

(NLO) F_2 Direct sensitivity to alyon

Burkard Reisert

MPI Project Review 2007

9

Sizable contribution of F_L only at high y

Reduced Cross Section vs. y

ZEUS

Measured reduced cross sections compare to SM predictions with

- CTEQ5D
- ZEUS Jets PDF Fit
- → measurement well described by predictions

Systematic checks

- □ Electron energy scale 2%
- γp background estimate 10%
- Electron finding inefficiency 10%
- Variation of E-Pz threshold 2 GeV

Proof of principle that we can measure at high y, i.e. low E_e ' Preliminary result presented at DIS 2007

MPI Project Review 2007

Burkard Reisert

Direct measurement of F_L

- Measurement of F_L will give access to gluon: $F_L \propto \int \frac{dz}{z^3} \sum_{z} e_q^2 \left(1 \frac{x}{z}\right) zg$
- Measure cross section $\sigma_r = F_2(x,Q^2) \frac{y^2}{Y_+}F_L(x,Q^2)$ at same *x* and Q² but different y, i.e. different centre-of-mass energy

- Change proton beam energy to change cms energy
- Large level arm in y^2/Y_+
- measure at high y in LER

Burkard Reisert

MPI Project Review 2007 Feasibility study: Will need ~10pb⁻¹ for measurement of F_L

HERA Dedicated Runs for F_L

MPI Munic

Burkard

Reisert MPI

Project

Review

2007

12

Towards Measurement of F_L

Aiming for preliminary measurement of F_L for DIS2008

Burkard Reisert

MPI Project Review 2007

Photon Proton Scattering

- The same process may be interpreted as scattering of a virtual photon off a proton
- Photon Proton centreof-mass energy:

$$W_{\gamma p}^2 \equiv -(P+q)^2 = ys - Q^2$$

Electrons scattered under very small angles are measured in 6m Tagger

> $W_{\gamma p} = 2\sqrt{E_p E_e y}$ with $y = 1 - \frac{E'_e}{E_e}$

ZEUS

Burkard Reisert

MPI Project Review 2007

Photon-Proton Cross Section

MPI

Energy dependence of total hadronic cross sections (pp, $p\bar{p}$, Kp, πp) by exchange of Regge trajectories. Same functional form expected for $\gamma p (\gamma \gamma)$ due to soft hadronic behavior of γ (Vector Dominance Model)

$$\sigma_{tot} = A \cdot W_{\gamma p}^{2\varepsilon} + B \cdot W_{\gamma p}^{-2\eta}$$

Projection of new measmnt using 6mTagger in HER, MER and LER

Reduced systematic errors thanks to large acceptance of 6mT, some syst. err. cancel LER vs. MER vs. HER \rightarrow Well measured slopes

Towards Measurement of $\sigma_{tot}^{\gamma p}$

MPI Munic

Reisert

MPI

Project Review

2007

First look at data

DIS08: aiming for preliminary measurement of slope of $\sigma_{tot}{}^{\gamma p}$

16

Leading Neutrons: Motivation

Attractive for Higgs studies (e.g. Khoze, Ryskin, Sterling hep-ph/0607134)

- Outgoing p's intact, small scattering angles \rightarrow known QN (J_z=0, CP-even selection rule)
- Energy loss of outgoing protons directly related to mass of central system
 → potentially excellent mass resolution, irrespective of decay mode of produced particle

MPI Munici

Burkard

Reisert

MPI

Project

Review

2007

Signal-to-background ratio of \mathcal{O} 1 is advertised

Such models are tuned/tested on leading nucleon data in ep-collisions

17

Leading Neutron in DIS & γp

ZEUS

MPI Munich

Burkard

Reisert

MPI

Project

Review

2007

Leading Neutron & Dijets

Add on analysis: identify dijets in yp with leading neutron tag

 E_{T} of jet-system provides scale (instead of Q²)

Burkard Reisert

MPI **Project** Review 2007

Measurement made preliminary, work on interpretation ongoing: Suppression due to n-absorption or reduced phase space (need to produce jets)?

- MPI Zeus group is a small but visible group, has its impact within the Zeus Collaboration
- Main focus will be to make the direct measurement of F_L preliminary for DIS08
- Slope for photon-proton total cross section aiming for preliminary for DIS08

Burkard Reisert

MPI Project Review 2007 Data acquisition at HERA has finished, the ongoing analysis will define the rich legacy of HERA