GERDA: GERmanium Detector Array searching for Ονββ decay GeDet: Germanium Detector R&D

Director:	Allen Caldwell
Projector leaders:	Béla Majorovits (GERDA), Iris Abt (GeDet)
Postdoc:	Josef Janicsko, Xiang Liu, Jens Schubert
Ph.D.:	Manuela Jelen, Kevin Kröninger(graduated 07/07),
	Daniel Lenz, Jing Liu
Group engineer:	Franz Stelzer
Diplomand:	Markus Kästle
Werkstudenten/in:	Golam Dastagir, Westa Domanova, Maximilian Empl,
	Daniel Greenwald, Andreas Kaiser
Construction:	Karlheinz Ackermann, Stefan Mayer, Sven Voggt

Many thanks to colleagues from electronic & mechanic departments! Project Review 17/12/2007

Neutrino masses & mixing parameters

$0_{\nu\beta\beta}$ decay \rightarrow effective Majorana neutrino mass m_{$\beta\beta$}

- $\bullet(A,Z) \rightarrow (A, Z+2) + 2e^{-1}$
- ■ $\Delta L \neq 0$

•happens, if $v = \overline{v} \& m_v > 0$

half life
$$[T_{1/2}]^{-1} = G({}^{2}Q, Z) \cdot \left| M^{GT} - \frac{g_{V}^{2}}{g_{A}^{2}} M^{F} \right| \cdot \left\langle m_{\beta\beta} \right\rangle^{2}$$

Phase space function matrix element effective mass $m_{\beta\beta}$

$$\left\langle m_{\beta\beta} \right\rangle = \left| \sum_{j} m_{j} U_{ej}^{2} \right| = \left| m_{1} \cdot \left| U_{e1} \right|^{2} + m_{2} \cdot \left| U_{e2} \right|^{2} e^{i(\alpha_{2} - \alpha_{1})} + m_{3} \cdot \left| U_{e3} \right|^{2} e^{i(-\alpha_{1} - 2\delta)} \right|$$

Measure $T_{1/2}$ of $0\nu\beta\beta$ decay

 $0\nu\beta\beta$

Experiment (selected)	Underground Laboratory	Isotope	T _{1/2} [10 ²¹ y]	<m<sub>ee> [<i>eV</i>]</m<sub>	
Elegant VI	Oto (Japan)	⁴⁸ Ca	> 95	< 7.2 - 44.7	
Heidelberg- Moscow	Gran Sasso (Italy)	⁷⁶ Ge	>19000 evidence: 11900	< 0.35 - 1.2 <mark>0.44</mark>	
IGEX	Canfranc (Italy)	⁷⁶ Ge	> 16000	< 0.3 - 1.5	
NEMO-III	Frejus (France)	⁸² Se	> 140	< 1.7 - 4.9	
NEMO-III		¹⁰⁰ Mo	> 460	< 0.7 - 2.8	
CdWO ₄ scintillator	Solotvina (Ukrain)	¹¹⁶ Cd	> 170	< 1.5 - 1.7	
Cuoricino	Gran Sasso	¹³⁰ Te	> 1800	< 0.4 - 1.9	
DAMA	Gran Sasso	¹³⁶ Xe	> 1200	< 2.9	

Why choose Ge76

sensitivity on $T_{1/2} \propto \epsilon \cdot \sqrt{\frac{MT}{B}}$

design focus	Ge76 advantage
high signal efficiency ɛ	source=detector, 85~95% E
large target mass & long exposure M·T	existing IGEX & HdMo detectors
extremely low level Background B	ultrapure material (HPGe) excellent energy resolution →FWHM ~3keV at 2MeV, small search window →reduce background, including 2vββ new development →segmentation, new type of Ge detector etc

⊗need enrichment (7.6% natural abundance, most bg scale with target mass)

5 p-type Ge76-enriched detectors
operated in Vacuum
shielded with Pb & Cu
underground (LNGS)

Previous Ge76 experiments

	HdMo	IGEX	
exposure[kg·y]	71.1	8.87	
B [counts/kg·keV·y]	0.11	0.2	Background index B:
T _{1/2} limit (90%CL)[y]	1.9·10 ²⁵	1.6·10 ²⁵	Counts/kg·kev·y
"Evidence for $0νββ"$ H.V.Klapdor-Kleingrothaus, etc., Phys. Lett. B 586 (2004) 198-21	1.2 ·10 ²⁵ (0.69-4.18 3σ) 2		keV: energy window year:exposure time

GERDA concept

Ge detectors directly submerged in LAr

LAr purer than conventional Pb & Cueasy for large volume

new detectors segmented

further reducing background

18 segments6x along φ3x along z

GERDA experiment at LNGS

page 10

GERDA design

.

Muon veto lock & suspension clean room water tank LAr cryotank detector array super structure PMTs for water Č veto

GERDA detector array

top view:

GERDA detector array

top view:

GERDA phase approach									
phase	I	II	III						
detectors	5 Hd-Mo & 3 IGEX detectors, 17.9 kg	18-fold seg., ~25kg	1ton scale						
Calibration Source Phase II Detector String String									
exposure[kg·y]	30	100	>10000						
bg [counts/kg·keV·y]	10E-2	10E-3	<10E-4						
limit on T _{1/2} [10E25 y]	verify/veto KK-claim	15	>1000						
limit on $m_{\beta\beta}$ [eV]	0.27	0.13	~0.02						

If Klapdor-Kleingrothaus claim is true, phase-I expect ~13 signal events, and 3 bg. events in 10keV window at Q

GERDA collaboration

Institute for Reference Materials and Measurements, Geel, Belgium Institut für Kernphysik, Universität Köln, Germany Max-Planck-Institut für Kernphysik, Heidelberg, Germany Max-Planck-Institut für Physik (Werner-Heisenberg-Insititut), München, Germany Physikalisches Institut, Universität Tübingen, Germany Dipartimento di Fisica dell'Universitä; di Padova e INFN Padova, Padova, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy Universitá; di Milano Bicocca e INFN Milano, Milano, Italy Jagiellonian University, Cracow, Poland Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia Institute for Theoretical and Experimental Physics, Moscow, Russia Joint Institute for Nuclear Research, Dubna, Russia Russian Research Center Kurchatov Institute, Moscow, Russia University Zurich, Switzerland

Our institute responsibilities

Our institute responsibilities

Infrastructure ✓ clean room ✓ inner & outer lock ✓ suspension strings ✓ HV & signal cables

Monte Carlo
geometry implementation
background simulation & estimation
pulse shape simulation
Analysis

Phase-II detectors
R&D
production
transportation
storage
commissioning

100

Infrastructure: clean room

 provide Radon-reduced air in crystal enviroment 8 active Chaco filter (total 1.25ton) from ICDO, International Civil Defence Organization, Geneva
 tender for participation competition closed

Infrastructure: inner, outer locks & cable arms

Infrastructure: rail system

magnetic arms

page 20

Infrastructure: lowering detector string into LAr

Infrastructure: lowering detector string into LAr

Infrastructure: detector transportation & on-site storage

Detectors can be stored in Vacuum or gas N2/Ar environment.

Phase-II prototype detector R&D

One 18-fold segmented n-type detector exposed to γ and n sources \rightarrow confirmed segmentation technique & MC simulation

- "Characterization of the detector" "Identification of photon events... " "Pulse shape analysis... "
- "Test of PSA..."
- "Neutron interaction..."

- I. Abt et al. NIM A 577 (2007) 574
- "Identification of photon events... " I. Abt et al. NIM A 583 (2007) 332-340
 - I. Abt *et al.* EPJC accepted
 - I. Abt et al. Submitted to EPJC
 - I. Abt et al. Submitted to EPJA

Phase-II prototype detector R&D: remove γ background

Phase-II prototype detector R&D: neutron interactions

study neutron interaction with Gecheck Geant4 MC simulation

energy spectrum from AmBe source

inelastic scattering (n, $n'\gamma$)

recoil energy spectra

New test stand for phase-II prototype detectors under construction

Gerdalinchen-II with up to 3 detectors directly in LN2/LAr.

2 18-fold n-type &1 18-fold p-type detectors

Program: •detector performance •segment & crystal anti-coincidence cut •pulse shape

18-fold p-type

GeDet: new test stand for general purpose

3D scan of Ge detector surfaces with γ , α sources & laser. study segment boundary, pulse shape, crystal axis....

Phase-II detector delivery status

Canberra France delivered 2 prototypes 06/07

ba

Phase-II detector delivery status

fraction of Ge isotopes

(Institute of Microelectronics Technology & High Purity Materials, Chernogolovka, Moscow)

	Ge1a	Ge1b	Ge2b	Ge3b	Ge4b	Ge_i1	Ge_i3	Ge_i4	Ge n
70	22.8	22.7	22.8	22.8	22.8	22.74	22.75	22.70	21.2
72	30.1	30.0	30.00	30.00	30.00	30.07	30.05	30.08	27.8
73	8.32	8.30	8.33	8.33	8.32	8.32	8.30	8.29	7.75
74	38.2	38.4	38.3	38.3	38.3	38.27	38.30	38.34	35.9
76	0.59	0.60	0.59	0.59	0.60	0.60	0.60	0.59	7.35
depleted GeO2 metal G				e	Ge	after	ZR	natura	

No dilution of natural Ge

30

ICPMS on metal Ge (inductively coupled plasma MS)

ElementDL	GeO	2 1/4	2/4	3/4	Eleme	INDL	GeO_2	1/4	2/4	3/4	
ppm		-				ppm	-				
Li 0,00	6 <dl< th=""><th><0.01</th><th><dl< th=""><th><dl< th=""><th>Sb</th><th>0,03</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<0.01	<dl< th=""><th><dl< th=""><th>Sb</th><th>0,03</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th>Sb</th><th>0,03</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	Sb	0,03	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>	<dl< th=""><th></th></dl<>	
Be 0,00	05 <dl< th=""><th>< DL</th><th>< DL</th><th><dl< th=""><th>Te</th><th>0,006</th><th><0.02</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	< DL	<dl< th=""><th>Te</th><th>0,006</th><th><0.02</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	Te	0,006	<0.02	< DL	< DL	<dl< th=""><th></th></dl<>	
B 0,1	<dl< th=""><th><dl< th=""><th>< DL</th><th><dl< th=""><th>Cs</th><th>0,001</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th>< DL</th><th><dl< th=""><th>Cs</th><th>0,001</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	< DL	<dl< th=""><th>Cs</th><th>0,001</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	Cs	0,001	<dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	<dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>	<dl< th=""><th></th></dl<>	
Na 20	<dl< th=""><th><dl< th=""><th>< DL</th><th><dl< th=""><th>Ba</th><th>0,5</th><th><dl< th=""><th><7</th><th><1.8</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th>< DL</th><th><dl< th=""><th>Ba</th><th>0,5</th><th><dl< th=""><th><7</th><th><1.8</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	< DL	<dl< th=""><th>Ba</th><th>0,5</th><th><dl< th=""><th><7</th><th><1.8</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	Ba	0,5	<dl< th=""><th><7</th><th><1.8</th><th><dl< th=""><th></th></dl<></th></dl<>	<7	<1.8	<dl< th=""><th></th></dl<>	
Mg 1	<dl< th=""><th><dl< th=""><th>< DL</th><th><dl< th=""><th>La</th><th>0,003</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th>< DL</th><th><dl< th=""><th>La</th><th>0,003</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	< DL	<dl< th=""><th>La</th><th>0,003</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	La	0,003	<dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	<dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>	<dl< th=""><th></th></dl<>	
Al 2	<dl< th=""><th>< DL</th><th>< DL</th><th><dl< th=""><th>Ce</th><th>0,01</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	< DL	<dl< th=""><th>Ce</th><th>0,01</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	Ce	0,01	< DL	< DL	< DL	<dl< th=""><th></th></dl<>	
K 6	<dl< td=""><td><dl< td=""><td>< DL</td><td><dl< td=""><td>Pr</td><td>0,001</td><td>< DL</td><td>< DL</td><td>< DL</td><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>< DL</td><td><dl< td=""><td>Pr</td><td>0,001</td><td>< DL</td><td>< DL</td><td>< DL</td><td><dl< td=""><td></td></dl<></td></dl<></td></dl<>	< DL	<dl< td=""><td>Pr</td><td>0,001</td><td>< DL</td><td>< DL</td><td>< DL</td><td><dl< td=""><td></td></dl<></td></dl<>	Pr	0,001	< DL	< DL	< DL	<dl< td=""><td></td></dl<>	
Ca 7	<10	<dl< th=""><th><dl< th=""><th><dl< th=""><th>Nd</th><th>0,002</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th>Nd</th><th>0,002</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th>Nd</th><th>0,002</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	Nd	0,002	<dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	<dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>	<dl< th=""><th></th></dl<>	
Sc 0,02	<dl< th=""><th>< DL</th><th>< DL</th><th><dl< th=""><th>Sm</th><th>0,0003</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	< DL	<dl< th=""><th>Sm</th><th>0,0003</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	Sm	0,0003	< DL	< DL	< DL	<dl< th=""><th></th></dl<>	
Ti 0,4	<dl< th=""><th>< DL</th><th>< DL</th><th><dl< th=""><th>Eu</th><th>0,0002</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	< DL	<dl< th=""><th>Eu</th><th>0,0002</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	Eu	0,0002	< DL	< DL	< DL	<dl< th=""><th></th></dl<>	
V 0,5	<dl< th=""><th>< DL</th><th>< DL</th><th><dl< th=""><th>Gd</th><th>0,0009</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	< DL	<dl< th=""><th>Gd</th><th>0,0009</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	Gd	0,0009	< DL	< DL	< DL	<dl< th=""><th></th></dl<>	
Cr 2	<dl< th=""><th>< DL</th><th>< DL</th><th><dl< th=""><th>Tb</th><th>0,0001</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	< DL	<dl< th=""><th>Tb</th><th>0,0001</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	Tb	0,0001	< DL	< DL	< DL	<dl< th=""><th></th></dl<>	
Mn 0,2	<dl< th=""><th><dl< th=""><th>< DL</th><th><dl< th=""><th>Dy</th><th>0,0003</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th>< DL</th><th><dl< th=""><th>Dy</th><th>0,0003</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	<dl< th=""><th>Dy</th><th>0,0003</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	Dy	0,0003	< DL	< DL	< DL	<dl< th=""><th></th></dl<>	
Fe 5	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>Ho</th><th>0.0001</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th>Ho</th><th>0.0001</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th>Ho</th><th>0.0001</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th>Ho</th><th>0.0001</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	Ho	0.0001	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>	<dl< th=""><th></th></dl<>	
Co 0,02	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>Er</th><th>0,0001</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th>Er</th><th>0,0001</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th>Er</th><th>0,0001</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th>Er</th><th>0,0001</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	Er	0,0001	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>	<dl< th=""><th></th></dl<>	
Ni 9,8	<dl< th=""><th>DL</th><th>< DL</th><th><dl< th=""><th>Ten</th><th>0,0001</th><th>$\leq DL$</th><th>DL</th><th>< DL</th><th><dl< th=""><th>at a stinue line it</th></dl<></th></dl<></th></dl<>	DL	< DL	<dl< th=""><th>Ten</th><th>0,0001</th><th>$\leq DL$</th><th>DL</th><th>< DL</th><th><dl< th=""><th>at a stinue line it</th></dl<></th></dl<>	Ten	0,0001	$\leq DL$	DL	< DL	<dl< th=""><th>at a stinue line it</th></dl<>	at a stinue line it
C 0,2	<dl< th=""><th>C -</th><th></th><th>) (D.</th><th>$\rightarrow T$</th><th>0.0005</th><th></th><th>- I I</th><th></th><th>< L</th><th>etection limit</th></dl<>	C -) (D.	$ \rightarrow T $	0.0005		- I I		< L	etection limit
Zn z	< DL	<dl< th=""><th><0.</th><th>< DL</th><th>Lu</th><th>,0002</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	<0.	< DL	Lu	,0002	< DL	< DL	< DL	<dl< th=""><th></th></dl<>	
Ga 0.1	<di< th=""><th><di< th=""><th><di< th=""><th><di< th=""><th>Шf</th><th>0.01</th><th><di< th=""><th>< DI</th><th><di< th=""><th>-DI</th><th></th></di<></th></di<></th></di<></th></di<></th></di<></th></di<>	<di< th=""><th><di< th=""><th><di< th=""><th>Шf</th><th>0.01</th><th><di< th=""><th>< DI</th><th><di< th=""><th>-DI</th><th></th></di<></th></di<></th></di<></th></di<></th></di<>	<di< th=""><th><di< th=""><th>Шf</th><th>0.01</th><th><di< th=""><th>< DI</th><th><di< th=""><th>-DI</th><th></th></di<></th></di<></th></di<></th></di<>	<di< th=""><th>Шf</th><th>0.01</th><th><di< th=""><th>< DI</th><th><di< th=""><th>-DI</th><th></th></di<></th></di<></th></di<>	Шf	0.01	<di< th=""><th>< DI</th><th><di< th=""><th>-DI</th><th></th></di<></th></di<>	< DI	<di< th=""><th>-DI</th><th></th></di<>	-DI	
As 0,2	<dl< th=""><th><dl< th=""><th>< DL</th><th><dl< th=""><th>Ta</th><th>0,01</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th>< DL</th><th><dl< th=""><th>Ta</th><th>0,01</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	<dl< th=""><th>Ta</th><th>0,01</th><th>< DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	Ta	0,01	< DL	< DL	< DL	<dl< th=""><th></th></dl<>	
Se 0,3	<dl< td=""><td>< DL</td><td>< DL</td><td><dl< td=""><td>W</td><td>83</td><td><DL</td><td><DL</td><td>< DL</td><td><dl< td=""><td></td></dl<></td></dl<></td></dl<>	< DL	< DL	<dl< td=""><td>W</td><td>83</td><td><DL</td><td><DL</td><td>< DL</td><td><dl< td=""><td></td></dl<></td></dl<>	W	83	<DL	<DL	< DL	<dl< td=""><td></td></dl<>	
Rb 0,00	9 <dl< th=""><th><DL</th><th>< DL</th><th>< DL</th><th>Re</th><th>0,003</th><th><DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	<DL	< DL	< DL	Re	0,003	<DL	< DL	< DL	<dl< th=""><th></th></dl<>	
Sr 0,04	<dl< th=""><th>< DL</th><th>< DL</th><th><dl< th=""><th>Ir</th><th>0,0004</th><th><DL</th><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	< DL	< DL	<dl< th=""><th>Ir</th><th>0,0004</th><th><DL</th><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	Ir	0,0004	<DL	< DL	<dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>	<dl< th=""><th></th></dl<>	
Y 0,00	1 <dl< th=""><th><dl< th=""><th>< DL</th><th><dl< th=""><th>Pt</th><th>0,06</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th>< DL</th><th><dl< th=""><th>Pt</th><th>0,06</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	< DL	<dl< th=""><th>Pt</th><th>0,06</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	Pt	0,06	<dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	<dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>	<dl< th=""><th></th></dl<>	
Zr 0,02	<dl< th=""><th>< DL</th><th>< DL</th><th>< DL</th><th>Au</th><th>0,01</th><th><DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	< DL	< DL	< DL	Au	0,01	<DL	< DL	< DL	<dl< th=""><th></th></dl<>	
Nb 0,02	<dl< th=""><th>< DL</th><th>< DL</th><th><dl< th=""><th>Hg</th><th>0,6</th><th><DL</th><th><DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	< DL	<dl< th=""><th>Hg</th><th>0,6</th><th><DL</th><th><DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	Hg	0,6	<DL	<DL	< DL	<dl< th=""><th></th></dl<>	
Mo 0,07	<dl< th=""><th><DL</th><th>< DL</th><th>< DL</th><th>TI</th><th>0,0002</th><th><DL</th><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	<DL	< DL	< DL	TI	0,0002	<DL	< DL	< DL	<dl< th=""><th></th></dl<>	
Rh 0,01	<dl< th=""><th><DL</th><th>< DL</th><th><dl< th=""><th>Pb</th><th>0,2</th><th><dl< th=""><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	<DL	< DL	<dl< th=""><th>Pb</th><th>0,2</th><th><dl< th=""><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	Pb	0,2	<dl< th=""><th>< DL</th><th>< DL</th><th><dl< th=""><th></th></dl<></th></dl<>	< DL	< DL	<dl< th=""><th></th></dl<>	
Pd 0,04	<0.3	5 <dl< th=""><th>< DL</th><th><dl< th=""><th>Bi</th><th>0,002</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	< DL	<dl< th=""><th>Bi</th><th>0,002</th><th><dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	Bi	0,002	<dl< th=""><th>< DL</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	< DL	<dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>	<dl< th=""><th></th></dl<>	
Ag 0,04	<dl< td=""><td><dl< td=""><td>< DL</td><td><dl< td=""><td>Th</td><td>0,0006</td><td><DL</td><td>< DL</td><td>< DL</td><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>< DL</td><td><dl< td=""><td>Th</td><td>0,0006</td><td><DL</td><td>< DL</td><td>< DL</td><td><dl< td=""><td></td></dl<></td></dl<></td></dl<>	< DL	<dl< td=""><td>Th</td><td>0,0006</td><td><DL</td><td>< DL</td><td>< DL</td><td><dl< td=""><td></td></dl<></td></dl<>	Th	0,0006	<DL	< DL	< DL	<dl< td=""><td></td></dl<>	
Cd 0,00	4 <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>U</th><th>0,0002</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th>U</th><th>0,0002</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th>U</th><th>0,0002</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th>U</th><th>0,0002</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	U	0,0002	<dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>	<dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>	<dl< th=""><th></th></dl<>	
											na

Monte Carlo package MaGe (Majorana-Gerda)

Geant4-based, developed together with Majorana.
 object-oriented framework allows parallel developing

 → same physics, different geometries.

 optimized for low energy & low bg.
 code sharing & physics verification.

MC simulation of background (phase II)

	Part		Backgrou [10 ⁻⁴ cou	und contribution unts/(kg·keV·y)]
	Detector	⁶⁸ Ge	4.3 →	after 2 years
		⁶⁰ Co	0.3	
		Bulk	3.0	
		Surf.	3.5 →	further reduction expected from PSA
	-Holder	Cu	1.4	
1		Teflon	0.3	
	Cabling	Kapton	1.5	
	Electronics		3.5	
	LAr		1.0	
	Infrastructure		0.2	
	Muons and neutro	ons	2.0	
	Total		21.0	

Summary

Open questions in v : absolute mass? hierarchy? Majorana or Dirac? \rightarrow GERDA (searching $0v\beta\beta$ in Ge76) might address all.

Infrastructure mock up built at institute.
Various tests show smooth detector handling. (shutter, rail, suspension, electronic contacts, lowering...)

Phase-II detector & GeDet R&D: rich physics program.
Enriched material delivered.
Tests with purification & crystal pulling ongoing, promising.

MC campaign (all contamination, all components) ongoing.Learn from GeDet R&D test stands.

GERDA construction started

cryotank top (inner)

ground level for water tank

cryotank top (outer)

backup

Effective Majorana neutrino mass vs. neutrino mass

Sensitivity on effective Majorana neutrino mass

. . .

Lock: Radon tight? Vacuum tight?

Detector inserting & lowering: suspension cables clean? hold in LAr? rail system smooth & precise? lowering procedure (how much time, wait..)? lowering without disturbance from LAr boiling? detectors angle and position well-defined afterwards?

HV and signal cables and contacts: impedance? Bandwidth? Cross talk? Hold in LAr? Clean? HV feedthrough in gas Ar?

Detector storage: Radon tight? Vacuum tight?

