ATLAS at MPP in 2007

Stefan Kluth for the MPP ATLAS group Project Review 2007 17.12.2007

0) ATLAS Overview

- 1) Installation
 - 2) Commissioning above and underground
- 3) Calibration, Alignment, Reconstruction & Tools
- 4) Physics Preparations
- 5) Computing
- 6) SLHC
- 7) Summary

ca. 44 x 22 m, 7000 t, ca. 2000 scientists, MPP contributions to inner detector (SCT), calorimeter (HEC), muon system (MDT) and computing (Tier-2)

Director: Bethke

0) ATLAS People

	SCT	HEC	MDT	Computing					
Staff	Kluth, <u>Nisius,</u> Schieck	Barillari, Huber, Kiryunin, Menke, Oberlack, <u>Schach</u> t	<u>Kroha,</u> Richter <u>t</u>	<u>Kluth,</u> v.d.Schmitt					
PostDoc	Ghodbane, Macchiolo	Pospelov	D´Orazio, Dubbert, Ho Kortner, Kotov, Legge Mohrdieck-Möck, Reb Yuan, Zhuang, Zhuray	orvat, er, Stonjek uzzi, Mejia vlov,					
PhD/Dipl.	Beimforde, Banger Göttfert, Härtel, Pataraia	t, Erdmann, Giovannin Jantsch, Rauter	Bittner, Dedes, ^{ni,} Ehrich, Groh, Kaiser, v.Loeben						
Guest		Minaenko, Stavina, Strizenec	Potrap						

1) Installation: SCT ECA

Quadrant of ATLAS inner detector

Si detector layout and design

Final installation of endcap A (ECA) into ATLAS May 2007

1) Installation: SCT ECA

down the access shaft ...

... and finally into ATLAS

1) Installation: HEC

Installation of Endcap (EC) C

EC magnet test incident November 22

1) HEC ECC & Magnet Test

Sketch of test setup

ECC magnet current vs. time

1) HEC ECC & Magnet Test

Damage to LAr transfer line vacuum broken, cold line ok repair until Feb. 08 ok with schedule

1) Installation: MDT

Jan.-Feb. 07 installation of barrel chambers (MDT+RPC) Mar.-Dec. 07 commissioning with cosmics

Project review 2007 - ATLAS - Stefan Kluth

2) Commissioning: SCT

SCT/TRT data taking with cosmics in SR1 surface building

Endcap SCT ENC from noise scans

2) Commissioning: HEC

Regular data taking with cosmics barrel and ECA incl. HEC

2) Commissioning: MDT

AS - Stefan Kluth

2) Commissioning: MDT

2) Commissioning: MDT

~ $2 \cdot 10^7$ cosmic muons reconstructed ca. 25% of detectors in operation

Initial alignment of installed detectors

Magnetic field corrections to drift time vs radius r

Project review 2007 - ATLAS - Stefan Kluth

3) Local χ^2 Alignment for ID

Project review 2007 - ATLAS - Stefan Kluth

3) CTB Alignment

CTB = combined test beam (2004)

3 Pixel and 4 SCT layers tracks (pions) 2-180 GeV/c limited illumination track momenta as expected after alignment

3) ID Alignment with CSC Data

CSC = computing system challange, data contain "realistic" misalignment

Level 1: ECs, barrel etc. large structures, ca. 50 d.o.f. Level 2: barrel layers and EC disks, ca. 1000 d.o.f. Level 3: modules, ca. 40k d.o.f.

3) Calorimeter/Jet Calibration

- 1) cluster reconstruction (and correction)
- 2) jet finding
- 3) jet energy correction det.had.-level
- 4) jet energy correction had.part.-level

3) Calorimeter/Jet Calibration

Topological 4/2/0 clustering algorithm

Classify clusters as " π^{0} " or " π^{\pm} " depending on depth and energy density

Apply MC based correction for π^{\pm} like clusters

3) Calorimeter/Jet Calibration

MC Performance study with di-jets $0.2 < |\eta| < 0.4,$ $E_{jet} \approx 150 \pm 40 \text{ GeV}$ k_t (R=0.4)

red:uncorrectedblue:cluster correctiongreen:+ out-of-cluster corr.black:+ dead material corr.

remaining discrepancy due to out-of-jet and misclassification

3) CTB Calorimeter Analysis

CTB and MC (Geant4) agree ok Basis for using MC for cluster/jet calibrations

Project review 2007 - ATLAS - Stefan Kluth

50

100

150

200 E_{beam} (GeV)

3) Muon Chamber Calibration

Determination of time-to-distance (r-t) relation, sychronisation, resolution, including mag. field and highrate corrections

Need O(1000) tracks per calibration

Project review 2007 - ATLAS - Stefan Kluth

3) Muon Alignment with Tracks

Optical monitoring of large chambers, monitoring with tracks of small chambers, initial alignment with straight (B=0) tracks

4) Physics: top Quark Properties

- Top quark mass (CSC note T2)
 - semileptonic: golden channel
 - hadronic: challenging, connected with jet calib.
- pp \rightarrow t<u>t</u> production cross section
 - semileptonic w/o b-tag (safe), w b-tag (better errors)
- commissioning with $t\underline{t}$
 - understand/calibrate calorimeter/jets

4) Physics: top Quark

$$\begin{split} \sigma_{t\underline{t}} &\simeq 800 \text{ pb} \Rightarrow 1 \text{ t}\underline{t}/\text{s at } \mathscr{L} = 10^{33}/(\text{cm}^2\text{s}) & \text{P} \\ \text{Selection cuts: 1 lepton } p_t > 20 \text{ GeV}, \geq 4 \text{ jets } (k_t(0.4)) \\ (p_t = 40,40,40,20 \text{ GeV}), \ |\eta| < 2.5, \ E_{t,miss} > 20 \text{ GeV}, \\ \text{highest-p}_t \text{ 3-jet comb.} \Rightarrow t, \ \text{highest-p}_t \text{ 2-jet comb} \Rightarrow W \\ \text{Project review } 2007 \text{ - ATLAS - Stefan Kluth} \end{split}$$

4) Physics: top Quark

Invariant Mass Distribution of the W Boson

- Jet reconstruction algorithm was run on Monte Carlo truth after hadronization.
- No detector simulation was performed.

tune k_{t} jet algorithm for t<u>t</u> analysis

from highest- p_t 3-jet mass distribution extract cross section or mass

backgrounds: W+jets, QCD

4) Physics: Higgs & SUSY

Contributions to important searches for SM/MSSM Higgs and SUSY

CSC-2: $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ CSC-3: $qqH, H \rightarrow \tau\tau$ CSC-4: $(gg, qq)H, H \rightarrow WW$ CSC-5: $t\bar{t}H, H \rightarrow b\bar{b}$

CSC-7: $A/H \rightarrow \tau^+ \tau^-$ CSC-8: $A/H \rightarrow \mu^+ \mu^-$ (co-editor: S.Horvat) CSC-10: $t \rightarrow bH^+, H^+ \rightarrow (\tau^+ \nu, tb)$

SUSY:

contributions to 3 CSC notes

4) Physics: SM Higgs in VBF

4) Physics: MSSM Higgs

Heavy (large tan \$\$) neutral MSSM Higgses: pp \rightarrow (H/A $\rightarrow \mu^+\mu^-) + b\text{-jets}$ +X

good mass resolution, but background from Z decays \Rightarrow use b-tagging

5) S-LHC/ATLAS upgrades

- S-HLC = Super-LHC
 - major luminosity upgrade (x 10) of LHC planned for ~ 2015
 - some new ATLAS detector components needed
- MPP contributions to ATLAS upgrades
 - more rad.-hard Si ID (new Pixel inner layer for 2011/2012?)
 - more rad.-hard HEC readout electronics
 - faster muon chambers, more rad.-hard readout

5) S-LHC: thin pixel sensors

Problem: depletion E-field rises with rad. damage \Rightarrow O(1000 V) for normal Si detector (250 µm) \Rightarrow thin detectors (50 – 100 µm)

Detailed simulations: depletion O(100 V), fast signal, low noise, sufficient signal (~4000 e⁻)

Verification with real test devices needed

5) Thin Sensor Test Devices

Collaboration with Bonn, Dortmund, Oslo, IZM Interon; RD50

Make 75 and 150 μm n-in-n and n-in-p wafers at HLL and industry

5) New HEC Readout

Expect in 10a ATLAS@LHC $2 \cdot 10^{13}$ n/cm² Plan for ATLAS@S-LHC few $\cdot 10^{15}$ n/cm² Develop pin-compatible more rad.-hard cold electronics

5) HiLum Tests

First testrun at IHEP Protvino 50 GeV/c p beam 10-17 November

5) New MDTs

S-LHC: high n/ γ cavern background \Rightarrow high occupancy

develop fast 15 mm drifttube, more rad.-hard electronics, selective readout

6) Computing

- Worldwide LHC Computing Grid (WLCG)
 - provide resources for LHC experiments on grid
 - ATLAS MPP group is member of WLCG collab.
- Munich Tier-2 centre (LMU/LRZ/MPP/RZG)
 - our $\frac{1}{2}$ located/operated at RZG
 - plege ressources to WLCG for ATLAS
 - ATLAS uses via grid
 - other VOs possible

6) Computing

MPP Linux Cluster at RZG ATLAS usage

Status: ATLAS LCG functions complete (except SRM)

6) Muon Calibration Centre

MDT calibration centres

each receive 1/3 of calibration stream provide calib. within 24h to ATLAS

of MPP Munich Tier-2 at RZG

7) LHC Schedule

K. Foraz TS-IC-PL

Upated General schedule - wk 41

10/8/2007

7) ATLAS Schedule

ATLAS Installation schedule v. 9.2b

M. Kotamäki, M.Nessi 10-Oct-2007

7) Summary

- ATLAS installation essentially complete
- commissioning of hard- and software is top priority now
- Subdetectors take cosmics data successfully
- Schedules converge for mid-2008!

3) SR1 Alignment

Alignment of SCT endcap disks in SR1

3) ID Alignment with CSC data

Itr N	1	2	3	4	5	6	7	8	9	•••	20	21		30	31		40	41
Alignment Level	1	1	1	1	1	1	1	1	2	2	2	3	3	3	3	3	3	3
Fixed Pixel Detector	Y	Y	Y	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	N	Ν	Ν	Ν	N
Glb. shift	Ν	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Event Number	5k	5k	5k	5k	5k	5k	5k	5k	5k									
Error Scaling	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Vertex Constraint	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Beam Constraint	Ν	N	Ν	N	N	Ν	Ν	N	Ν	N	Ν	Ν	N	N	IBC	Ι	Ι	BC
CHI2 cut for Tracks	N	N	Ν	Ν	N	Ν	Ν	Ν	Ν	N	Ν	Ν	N	N	Ν	Ν	N	N
TRT hits forTrack	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	N
Endcap Hts	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	N	Ν	Ν	Ν

First deal with large displacements, then improve smaller local displacements Use vertex and beam spot constraints

5) New HEC Readout

Develop more rad.-hard pin-compatible PSB boards

Upgrade possible without wheel disassembly

