

X-ray HV Currents and Future Plans

PXD Workshop and 24th International Workshop on DEPFET Detectors and Applications 16.05.2022

<u>G. Giakoustidis*</u>

Physikalisches Institut der Universität Bonn

*giakoustidis@physik.uni-bonn.de

OVERVIEW

- Investigation and problem tackling of high HV currents at KEK
- Effect reproduction in the lab
- Current understanding of the mechanism
- Future irradiation plans and progress
- Outlook

HIGH HV CURRENTS AT KEK

- High HV currents were observed for the first time at KEK
- Initially HV channel only supplied
 ~1.3 mA current channel limit
 - Reduce HV current by tweaking other matrix voltages, e.g. BULK
- Modify HV channel on LMU PS to supply more current
 - Currently tested up to 28 mA
 - Temperature will be a limitation
- Tests still ongoing

March/April 2020

April/May/June 2020

X-RAY IRRADIATION AT BONN

- Two irradiation campaigns in Nov 2020 and Jan 2021
- Irradiation of the DUT is done in steps to allow for characterization in between
- Correlated trends → parasitic channel between BULK and backside
- Saturation point around -7 mA
- Currents anneal with irradiation beyond this point
- Origin of the current?

HIGH HV CURRENT MECHANISM

 <u>Current understanding</u>: High electric fields at guard-ring structures, which results in avalanche current multiplication and consequently increased currents

- Different dose rate and radiation damage
- HV currents at KEK should have reached saturation, but they keep increasing!
- Maybe additional HV current due to bulk damage?
 - Electrons can damage the crystal lattice → increase in leakage current
- Further investigation is needed with dedicated test structures

MOS CAPS AND MOSFET STRUCTURES

- Processing similar to DEPFET
 - Backside implantation of the Top Wafer
 - Oxidization of the Top and Handle Wafer
 - SOI bonding of the two Wafers (Shin-Etsu and IceMOS)
 - Passivation
 - Unstractured n-type substrate on the topside of the Top Wafer
 - Etching

d) anisotropic deep etching opens "windows" in handle wafer

NEW TEST STRUCTURES

- Six (6) wafers in total
 - Three (3) IceMOS bonded SOI
 - Three (3) Shin-Etsu bonded SOI
- Five (5) different structures
 - Four (4) MOSFET
 - One (1) MOS CAP
- Structures have been cut, tested and sent to Bonn

TEST STRUCTURE 1

PCB DESIGN

- Four layer passive component PCB
 - Voltage lines (F.Cu)
 - Source layer
 - GND layer
 - Voltage lines (B.Cu)
- Decoupling capacitors at the backside
- Small area (6x6 cm²) to account for environment specifications of irradiation sites
- PCB v0, review before submission

- X-ray irradiation at Bonn (starting 15.07)

- Electron irradiation at MAMI
- Proton irradiation at HISKP cyclotron in Bonn
- Neutron irradiation at the light water reactor in Ljubljana (?)

- X-ray irradiation at Bonn (starting 15.07)
- Electron irradiation at MAMI
- Proton irradiation at HISKP cyclotron in Bonn
- Neutron irradiation at the light water reactor in Ljubljana (?)

- X-ray irradiation at Bonn (starting 15.07)
- Electron irradiation at MAMI
- Proton irradiation at HISKP cyclotron in Bonn
- Neutron irradiation at the light water reactor in Ljubljana (?)

- X-ray irradiation at Bonn (starting 15.07)
- Electron irradiation at MAMI
- Proton irradiation at HISKP cyclotron in Bonn
- Neutron irradiation at the light water reactor in Ljubljana (?)

OUTLOOK

- High HV currents at KEK since April 2020
 - LMU PS modifications to keep supplying the needed current
- Effect was reproduced during X-ray irradiation in Bonn
- Discrepancy between KEK and irradiation campaign observations
 - Dose rate
 - Particle type \rightarrow different radiation damage
- Test structures to probe the mechanism already received
- First version of PCB to mount the structures already designed
- First irradiation campaign (X-rays) already scheduled for mid-July 2022

THANK YOU!

the second se

BACKUP

the second se

SURFACE RADIATION DAMAGE ON DEPFET

DEpleted P-channel Field Effect Transistor (DEPFET)

- − X-ray irradiation \rightarrow e-h pairs \rightarrow Oxide damage
 - 1. Trapped holes at SiO₂ / Si border due to their low mobility
 - 2. Interface traps
 - Moving holes in the lattice release protons
 - Protons drift towards the SiO₂ / Si interface
 - Reaction with hydrogen-passivated defects \rightarrow H₂ molecules
 - H₂ molecules diffuse out and charge defect is left behind
- Effect on V_{th} of a FET
 - Negative threshold shift for p-channel MOSFET
 - DEPFET gate (V_G) and Common Clear Gate (V_{ccg})

SURFACE RADIATION DAMAGE ON DEPFET

DEpleted P-channel Field Effect Transistor (DEPFET)

- X-ray irradiation \rightarrow e-h pairs \rightarrow Oxide damage gate 1. Trapped holes at SiO_{2} / Si border due to their low mobility (+)2. Interface traps p-channe gate . p⁺ drain p⁺ source Effect on V_{th} of a FET — **Trapped holes** Negative threshold shift for p-channel MOSFET _ Interface traps internal gate n⁻ bulk **DEPFET gate (V**_c) and **Common Clear Gate (V**_{ccc}) p⁺ backside

X-RAY IRRADIATION SETUP

- X-ray setup in Bonn
- X-ray tube settings:
 - $-V_{tube} = 40 \text{ kV}$
 - I_{anode} = 50 mA
- Characteristics:
 - Tungsten target
 - Al filter (150 μm)
- Water-cooled
- Two irradiation campaigns
 - November 2020: 3 DUTs (prototypes)
 - January 2021: 2 DUTs (full-scale, **1 prev. unirradiated**)

X-RAY IRRADIATION SETUP

DOSIMETRY

- Beam profile measured with a pre-calibrated diode
 - Anode heel effect \rightarrow Inhomogeneous beam profile
 - Different dose for different module area \rightarrow Different ΔV_{th}
 - Independent V_{g} and V_{ccg} steering in three regions
 - Total Ionizing Dose (TID) up to **18.6 Mrad** in the DEPFET SiO_2
 - Expected lifetime (10 years) exposure of the PXD is ~20 Mrad

16.05.2022

THE DEPFET STRUCTURE AND WORKING PRINCIPLE

DEpleted P-channel Field Effect Transistor (DEPFET)

UNIVERSITÄT BONN

DEPFET I-V CURVE

- Drain Current I_D [ADU] 300 200 100 0 -100-10000-8000-6000-4000-20002000 0 Gate Voltage V_G [mV] 0.0 kGy • 0.14 kGy 0.9 kGy 6.34 kGy 23.56 kGy 66.16 kGy 129.62 kGy • • • • • 34.44 kGy 0.05 kGy 0.23 kGy • 1.81 kGy • 9.96 kGy • 90.64 kGy 181.28 kGy • • • 0.09 kGy 0.45 kGy 3.62 kGy 15.4 kGy 48.94 kGy •
- I-V curve per pixel
- Drain Current vs Gate Voltage
- First measurement as reference (0 kGy)
- Only relative threshold shift calculated
 - Curves binned along I_D axis
 - ΔV_{th} = mean difference over all bins wrt the reference

DEPFET GATE THRESHOLD SHIFT

January 2021 campaign

January 2019 campaign

[Harrison Schreeck, Botho Paschen, et al (2020). *Effects of gamma irradiation on DEPFET pixel sensors for the Belle II experiment*]

- Boxes contain measurements from different pixels and irradiation steps
- Jumps due to large irradiation steps

- Full-scale DEPFET modules in both cases
- Similar threshold evolution

COMMON CLEAR GATE THRESHOLD SHIFT

January 2021 campaign

January 2019 campaign

[Harrison Schreeck, Botho Paschen, et al (2020). *Effects of gamma irradiation on DEPFET pixel sensors for the Belle II experiment*]

- Not per pixel, but per region (1, 2, 3)
- Taking into account inhomogeneous irradiation → 3x more data points

- Full-scale DEPFET modules in both cases
- Similar threshold evolution