

DCD gain, g_m and g_q measurement of PXD modules

24th International DEPFET workshop

Master Thesis by Larissa von Jasienicki Talk by Munira Khan on behalf of the Bonn group

CALIBRATION OF PXD MODULES

- 12 module testing steps to check functionality and characterize modules
- Homogeneous efficient pixel response
 - > Tuning of matrix biasing voltages
 - > Tuning of DCD voltages and parameters
- All studies presented here are on fully optimized modules

PXD Module Characterization

Biasing voltage studies

BIASING VOLTAGE STUDIES

- Impact of different biasing voltages on pedestals
- Biasing voltages:
 - 1. hv: backside
 - 2. drift voltage: drift implants
 - 3. clear-off voltage: clear contact

Müller Felix (2017): Characterization and optimization of the prototype DEPFET modules for the Belle II Pixel Vertex Detector.

- hv influences pedestals!
 - Acts as remote gate (~75µm)
 - Coupling to FET
 - Change of potential influences drain current
- hv > -60V: not fully depleted

IMPACT BIASING VOLTAGES

W57_OF2

- Couplings to FET

- Clear-off voltage has highest impact on FET

Tuning of DCD parameters Measurements of g_m and g_q

TUNING DCD PARAMETER

- 256 ADC (Analog to Digital Converter) channels per chip
- Optimize ADC response:
 - > Tune voltages and settings
 - Whole dynamical range
 - No missing codes
 - As linear as possible
- No DCD gain in units of current

Bad setting

Good setting

DCDs

DCD GAIN MEASUREMENT

- Exact channel-by-channel calibration through injection of external current
- Necessary to evaluate DEPFET parameters, such as g_m and g_q

	W56_OF1	W56_OF1	W57_OB1	W57_OF2	W57_IB	W60_OF1
DCD gain ADU/µA	9.51	9.74	9.40	9.66	9.93	9.20

DCD GAIN PER CHANNEL

- Deviations within upper and lower half DCD
 - > Relative difference of around 6%
 - > Internal voltage drop?

Fundamental DEPFET pixel properties:

> **Transconductance** g_m : amplification of FET $g_m = \frac{\partial I_D}{\partial V_G}$

 g_q

- Charge amplification g_q: amplification of pixel
 - Rough expectation: $g_q \approx 400 600 \, pA/e^-$
 - \rightarrow Investigation on pixel level

TRANSCONDUCTANCE G_M

W60_OF1

Median over individual VnSubIn data points for row320 and col124

UNIVERSITÄT BONN

I_D: measured current

 V_G : gate voltage

 A_{DCD} : DCD Gain

RESULTS OF G_M MEASUREMENT

W60_OF1

RESULTS OF G_M MEASUREMENT

W56

-73.4

W56_OB1

-72.8

				Ladislav Andrice	k, MPG Halbleiterlabor	
OF1	W57_OB1	W57_OF2	W57_IB	W60_OF1	W67_IB	

-65.6

-64.3

 \rightarrow Dependence between wafer and mean g_m observed

-65.9

-61.7

munira.khan@uni-bonn.de

-46.0

CROSS-CHECK FOR G_M MEASUREMENT

W67 IB

100 $gm = (-50.0 \pm 0.6) mA/V$ - Read drain current directly from power supply 90 - g_m measured over all drain lines source current /mA 80 (not per pixel!) 70 - Previous method: $-46.45 \frac{\mu A}{v}$ with std. of $6.6 \frac{\mu A}{v}$ over all pixels 60 - Cross-check value: $(-50.0 \pm 0.6) \frac{\mu A}{V}$ 50 -2400 -2200 -2000 -1800-1600

gate on voltage /mV

PROJECTION TRANSCONDUCTANCE G_M: ROWS

PROJECTION TRANSCONDUCTANCE G_M: COLUMNS

SINGLE PHOTON SPECTRUM

W60_OF1

$$g_{q} = \frac{\mu}{A_{DCD}} / \frac{E_{K_{\alpha}}}{E_{eh}} = 743.8 \, pA/e^{-1}$$

$$E_{eh} = 3.65 \, eV/e^{-1}$$

$$E_{eh} = 3.65 \, eV/e^{-1}$$

$$E_{K_{\alpha}}: \text{ energy } ^{109}\text{Cd } K_{\alpha}$$

$$\mu: \text{ measured } K_{\alpha} \text{ peak}$$

$$A_{DCD}: \text{ DCD Gain}$$

$$k_{\alpha} = 22.1 \, keV$$

$$K_{\beta} = 25.02 \, keV$$

RESULTS OF G_o MEASUREMENT

W57_IB

	W60_OF1	W57_IB	W67_IB
g _q /pA/e ⁻	743.91	648.55	517.40

- Assumed: $g_q \approx 400 600 \, pA/e^-$
- All measured with gate-on = 2.1V
- Different source current

G_O **PIXEL STRUCTURES**

PROJECTION OF CHARGE AMPLIFICATION G_Q

- Biasing Voltage Studies
 - Potential couplings between Implants and FET
- Detailed channel by channel /pixel by pixel characterization
 - > Deviations between modules \rightarrow More statistics needed for g_a! Observed wafer dependent variations in g_m
 - > Recurring pattern inside sensitive area \rightarrow Several patterns under investigation
- Outlook: Different structures when irradiating modules?
- \rightarrow All plots for all tested modules can be found in Larissa's thesis

- 4 layers of double sided silicon strips (SVD)
 - > R = 3.9 cm, 8.0 cm, 10.4 cm, 13.5 cm
 - \rightarrow Area ~ 1 m²

- 2 layers DEPFET pixel detector (PXD)
 - → R = 1.4 cm, 2.2 cm
 - > Area ~ 0.03 m²

detector-for-an-updated-

THE DEPFET PIXEL

- Field Effect Transistor (FET): source, gate, drain
- Depleted silicon bulk
- Fast charge collection in internal gate (~ns)
 - Modulates drain current I_D
- Additional FET for clear mechanism
 - > Internal gate cleared periodically
 - Clear-on voltage applied at clear contact
- Pedestals: drain current without charge inside internal gate

$$I_{sig} = I_D - I_{ped}$$

https://indico.belle2.org/event/2751/contribu tions/13095/attachments/7153/11097/2020_ 09_14_belle2_germany_pxd6.pdf

THE PXD MODULE

- Thickness of active area: 75 μm
- Rolling shutter readout: row wise
 - > Drain current read with ~20 μs integration time
 - Controlled by gate and clear voltage
- Switcher:
 - Control gate and clear lines
- Drain Current Digitizer (DCD):
 - > 256 Analog to Digital Converters (ADCs)
 - > Digitizes drain current
- Data Handling Processor (DHP):
 - > Processes data further

DEPFET MATRIX

SWITCHER

DCD

DHP

MODULE TESTING SETUP

- Spread due to:
 - > Process variations
 - > DCD gain influence
 - \succ g_m and threshold
- Pedestals need to be uploaded frequently:
 - > Temperature
 - Radiation

16ER ROW PATTERN

- Differences in pattern for larger/smaller pixel
 - > Production of implants
 - Lithography masks overlapping

DEPLETION DEPFET PIXEL

1) high voltage (hv) applied to punch-through contact

- hv ~ -35 V depletion zone spreads to the backside
- 3) Bulk starts to get depleted

4) Bulk fully depleted

MATRIX BIASING

- Optimal bulk depletion
 - Homogeneous pixel response
 - > Highest charge collection efficiency

⁹⁰Sr (33MBq)

