

Belle II (PXD) Alignment

Tadeáš Bilka^{1*}

¹Charles University, Prague

PXD Workshop and 24th International Workshop on DEPFET Detectors and Applications 16 – 18 May 2022 Siemens Campus, München Neuperlach

* bilka@ipnp.mff.cuni.cz

- Introduction
- PXD from alignment point of view in Spring 2020 and 2021 reprocessing (proc12)
- New automated combined PXD+SVD+CDC alignment
- Recent PXD performance with the new alignment
- Summary

* KLM is also using Millepede II but not simultaneously with tracking detectors, only afterwards (currently)

- Alignment method: Millepede II
 - Subdetectors: PXD, SVD, CDC *
 - Full exact solution of the alignment problem
 - All subdetectors always aligned together
 - All correlations automatically resolved
 - Up to 60k parameters including CDC wires
 - Sensor deformations up to quartic
- Major update since 2021c
 - Validated by 2021 reprocessing (proc12) of Spring 2020 data
 - Advanced alignment with run-dependence deployed as regular prompt calibration

- Data from Spring 2020 used for extensive validations
 - Experiment 12: 03/04 06/30 2020
- Evaluated performance of reprocessing alignment
 - Full realignment with CDC wires + run-dep alignment
- Studies of (residual) timedependence

Errors for points as sigma_68/sqrt(N) shown but mostly not visible

Integrated residuals: data vs. MC

Integrated over all sensors and dimuon data of exp12 → very large statistics – errors not shown

Alignment not reponsible for most of the data/MC difference

Evolution of median residuals per each PXD sensor

Estimated time-dependent instability from dimuons

• PXD L2 shows very significant instability before reprocessing

Forward sensors more affected due to large incidence angles of dimuon tracks At backward sensors, the effect gets averaged for residuals \rightarrow need alignment to decouple which degrees of freedom are responsible!

Exaggerated view of total PXD misalignment

The time-dep values are relative to time-indep, the total angle never reverses!

+X

8

Fwr

+X

• See

https://www.dropbox.com/s/s1xs7qzyb9n5fvg/pxd_exp12.gif?dl=0

• Relative to first alignment in exp12

Experiment 12 Run 0 - 890 alignment corrections × 100 **Belle II PXD**

Experiment 12 Run 2751 - 2755 alignment corrections × 100

Belle II PXD

Experiment 12 Run 6273 - 6312 alignment corrections × 100

•	

N.B.: Prompt calibration

- Automated using Airflow, done in **buckets** (usually two weeks)
- BNL calibration center
- Many calibrations, not just alignment

- Almost exact copy of the proc12 reprocessing configuration
- Deployed on Airflow since 2021c (Autumn), exp 20, bucket26
 - Now bucket32 running
 - Up to bucket31 shown in this talk

Full average alignment per bucket for all params

All sensors, deformations, half-shells

CDC layers and all wires

Best average value per bucket for more than 55k parameters

Aa

Run-dep alignment for each bucket on top

Every 80k events ... O(10) of blocks per bucket

- Standard performance evaluation method using cosmic rays
 - Cosmic skim recorded during collisions
 - Split muon track to two arms
 - Require at least 1 PXD hit and at least 4
 VXD hits on each arm
 - Compare helix parameters at POCA for both both arms \rightarrow resolution

At 5 GeV/c reference momentum

Data/MC correspondence very good for all helix parameters

Helix parameter biases and correlations

Impact parameter resolutions vs pseudo-momentum

Difference to MC still dominated by too optimistic SVD resolution

Better than 10um/14um in d0/z0 !

Much better data/MC correspondence than ever achieved at Belle with almost twice better resolution! Physics impact of remaining residual misalignment small/negligible for vertexing

- We have a pretty advanced alignment procedure at Belle II
 - Belle II is probably first experiment to employ exact solution methods for 60k parameters regularly
 ...and align sensor-by-sensor run-by-run
- Alignment and PXD is ready for precision physics
 - Publication-level vertexing performance about a month after data-taking
 - PXD physics performance close to ideal MC with advanced alignment
- Some observed instabilities are a bit worrisome
 - This is more relevant for CDC deformations (VXD cables?), which however move also VXD
 - Layer 2 bowing should be probably understood can significantly degrade performance for forward tracks
 - But maybe the complete L2 will be more stable?
- PXD half-shells do not close, most of overlaps lost
 - Overlaps also greatly reduced in SVD L3
 - Not a big problem for alignment (SVD L4+ overlaps fine), but something to consider during upcoming upgrade
- Plans
 - Correlate alignment results with detector and operation conditions/events
 - Hopes for collaborative effort
 - Improve time-dependence for SVD sensors
 - We can observe occasional continous SVD deformation after major events taking a couple of days to settle
 - · Only minor improvement from physics point of view and a lot of work ...

Thank you for your attention!

BACKUP

The moving z-reference in alignment payloads The only known issue of the new alignment Belle II

