Offline Calibration and Performance Monitoring of the PXD

PXD Workshop and 24th International Workshop on DEPFET Detectors and Applications

Qingyuan Liu May. 17, 2022

PXD offline calibration

The current status

- Enabled calibrations:
 - Pixel masking to detect hot/dead pixels
 - Gain calibration to estimate relative Gq
 - 24 regions per module: pixels controlled by the same ASICs (switcher, DCD and DHP)
- The current status
 - Proc13 is still ongoing
 - Chunk 1 (exp. 7, 8, 10) : done
 - Chunk 2 (exp. 12) : done
 - Chunk 3 (exp. 14) : to be started
 - Chunk 4 (exp. 16) :
 - Chunk 5 (exp. 17) :
 - Chunk 6 (exp. 18) :
 - Prompt 32 (run 1547-1916 exp. 24): just finished

PXD offline calibration

Issues

- Issues:
 - Almost no good runs in experiment 7 and 8
 - Calibrations stuck if using recoverable runs
 - No statistics for too many runs: empty events from unpacker
 - Robust dead pixel detection is still to be implemented
 - Basic ideas have been studied and validated with s-proc2

Performance monitoring

The current status

- What's already implemented in basf2
 - Based on Airflow+CAF (calibration analysis framework)
 - Using cDSTs (calibration Data Summary Table)
 - Served as validation for the PXD and its related calibrations
 - Attached to PXD gain calibration with variables for performance studies collected
 - PXD detection \oplus hit finding efficiency
 - # of track intersection and # of matched PXD hits in predefined regions (z-phi)
 - Powerful to find hit finding issues, e.g. inefficiency patterns of PXD overlap regions in the past, and new ones?
 - d0/z0 resolutions
 - : 1-D histograms of $\Delta d_0/\sqrt{2}$ and $\Delta Z_0/\sqrt{2}$ of HLT Bhabha skim.
 - Using selections from the 2019 Belle II note \rightarrow only the forward part of backward module is covered

$|\lambda| < 0.5$ and $p_t > 1$ GeV

DESY. | PXD offline calibration and performance monitoring | Qingyuan Liu

bucket30

Performance monitoring

The missing part

- Spatial resolution of the PXD in z-phi bins \rightarrow long term plan
 - Hope to work with cDST and doesn't repeat tracking
 - Track states before using PXD hits are probably good enough
 - Also help to tune PXD CKF ?
- d0/z0 resolution vs pseudo-momentum: 2-D histograms \rightarrow preliminary studies in this talk

Performance monitoring

Validation of the 2-track method with MC (Bhabha skim and mumu_tight skim)

- Selections
 - nCDCHits>20, nSVDHits>=8, nPXDHits>=1, dr<0.3 cm, abs(dz) < 1.0 cm
 - Requiring PXD Layer1 hit (firstPXDLayer==1)
 - 9.5 < InvM < 11.5 GeV for better resolution at low pseudo-momentum
 - P > 2 GeV for Bhabha and > 3 GeV for di-muon
- Methods used to estimate d0/z0 resolutions vs pseudo-momentum
 - 2-track Method: estimate with $\Delta d_0(z_0)/\sqrt{2}$, no MC true info used, d0/z0 corrected with IP
 - Requiring both tracks have pseudo-momentum in the same bin.
 - MC Truth: estimate resolutions with true d0/z0, not corrected with IP
 - $e^+(\mu^+)$ and $e^-(\mu^-)$ are mixed in this case
 - e0 (mu0) MC Truth: similar to the second method, and only use $e^+(\mu^+)$
 - e1 (mu1) MC Truth: similar to the second method, and only use $e^{-}(\mu^{-})$

Validation with Bhabha MC14ri_a

e^+ and e^- show different dependence 2-track method underestimates z0 resolution compared with **MC Truth** when $p\beta(\sin\theta)^{5/2}$ < 2

Validation with Bhabha MC14ri_a

Validation with dimu of MC14ri_a

Better agreement between μ^+ and μ^-

2-track method underestimates z0 resolution compared with **MC Truth** when $p\beta(\sin\theta)^{5/2}$ < 2 as in Bhabha

Validation with dimu of MC14ri_a

All methods agree with each other for d0 resolution

Similar bias as in Bhabha but the charge asymmetry is smaller than that in Bhabha

Statistical error only

Cosmic selections: HLT cosmic, abs(d0) < 1.0 cm, -2.0 < z0 < 4.0 cm, no InvM and momentum cut

- The 2-track method works quite well for d0 and will underestimate z0 resolutions
- Results from Bhabha and di-muon are consistent and are slightly worse than from the cosmic

- Lack of person power as all the other tasks: < 0.5 person</p>
- Current offline calibration algorithms work fine
 - Need reliable run quality flags in experiment 7 and 8 (not only PXD flags)
 - Feature to detect pixels from damaged switcher gates is to be finalised
- Performance monitoring has been automatised and has been used to find issues from tracking
 - d0/z0 resolution vs pseudo-momentum is ready to be implemented
 - A lot of issues in tracking has been found by the pull study of d0/z0 with the MC samples
 - Issues in PXD hit reconstruction
 - Bias of hit position
 - Underestimated hit errors?

Efficiency of layer 1

Efficiency of layer 1

Bucket32

Di-muons including cosmic

Bhabha

Statistical error only

Di-muons including cosmic

DESY. | PXD offline calibrations and performance monitoring | Qingyuan Liu Better performance and data MC agreement with release-06?

Check the pull vs variables w/o constraint of the same pseudo-p bin Validation with Bhabha MC14ri_a

- What fit hypotheses used for e^+ and e^- by default? Still Pions? Repeat the study with IP corrected d0/z0?
 - Cannot explain all these results
 - More plots in backup slides
 - Interesting ones here:

Effect of more materials in layer 2 ? Hit error in PXD is too small?

Check the pull vs variables w/o constraint of the same pseudo-p bin Validation with Bhabha MC

Check the pull vs variables w/o constraint of the same pseudo-p bin Validation with Bhabha MC

Check the pull vs variables w/o constraint of the same pseudo-p bin Validation with Bhabha MC

Check the pull vs variables w/o constraint of the same pseudo-p bin Validation with di-muon of MC14ri

- μ^+ and μ^- behave more similarly than e^+ vs e^-
- Some items to check:
 - Kalman filter initialisation after smoothing
 - Underestimated processing errors (material effect)?
 - Underestimated hit errors?

