
EDET HOUSEKEEPING

Software & Infrastructure

Max Planck Semiconductor Lab

Martin Hensel

1 7 . 0 5 . 2 0 2 2

M A X P L A N C K S O C I E T Y | S E M I C O N D U C T O R L A B O R AT O RY ||||

• Development progress during the last year

• VIServer – wrangling the gritty low-level stuff

• VIClient – presenting useful information

• VIManager – tying it all together, with a bow on top

• Documentation – when everything else fails

• Next steps – the dreaded audience participation section

• Infrastructure

• Current infrastructure

• Expected infrastructure changes (soon™)

AGENDA

E D E T H O U S E K E E P I N G – S O F TWA R E A N D I N F R A S T R U CT U R E 21 7 . 0 5 . 2 0 2 2

Suggestions for a better icon are

welcome, but it has to be at least

20% cooler than the current one.

M A X P L A N C K S O C I E T Y | S E M I C O N D U C T O R L A B O R AT O RY ||||

Structural replication of the real system with

nested data and functional classes

Sequencing system allowing to define

complex slow-control sequences

System watch-dog

Real-time logging of all changes

EEPROM servicing

Switch definitions for all program modules

on-the-fly (interfaces, clusters, sequences,

conditions).

Interfaces and classes for a multitude of

devices (I²C, Ethernet, GPIB, file system)

System independent (Win10, Ubuntu, XU1)

Flexible housekeeping schedules:

• Define (almost) arbitrarily complex read-out or

update plans with different timings.

• Switch automatically or manually between the

schedules.

Global value change handler and signaling:

Reduce update lag of and trigger recalculation

for dependent terms.

Run multiple server instances from the same

installation (as long as they have different

IPs and/or ports).

Bug fixing, refactoring, coding-style

Scaling calculation rework, ties into target

checking as well and unifies both systems.

DEVELOPMENT PROGRESS – VISERVER (V0.4.12)

E D E T H O U S E K E E P I N G – S O F TWA R E A N D I N F R A S T R U CT U R E 31 7 . 0 5 . 2 0 2 2

M A X P L A N C K S O C I E T Y | S E M I C O N D U C T O R L A B O R AT O RY ||||

Server state overview and controls

Flexible tabular views for direct slow control

Tabular view for sequences and their state

View for condition checking and resetting

View for EEPROM servicing and debugging

Model-View architecture

Rework of server overview into flexible and

adjustable tabbed environment

Accumulation of the multitude of available

views into a few easy to find categories

Interface to change to server definitions

Adaptation to central settings storage

Adaptation to multi-server control

(modularization, overview tie-ins, …)

Transition from fixed PyQt5 dependency to

more flexible qtpy framework:

• Selects either PyQt5 or PySide2 depending

on availability.

• Easy upgrade to Qt6 (hopefully).

Adaptation to scaling and targeting rework

(new editors for user input, changed

behavior of sequences and conditions)

DEVELOPMENT PROGRESS – VICLIENT (V0.18.4)

E D E T H O U S E K E E P I N G – S O F TWA R E A N D I N F R A S T R U CT U R E 41 7 . 0 5 . 2 0 2 2

M A X P L A N C K S O C I E T Y | S E M I C O N D U C T O R L A B O R AT O RY ||||

PyQt5 based container for the whole user

interface, combining windows of client and

ASIC/data taking  All in one tool.

Sophisticated docking system: the user can

adapt the UI to the current needs.

Interface between slow-control, ASIC and

data-taking modules.

Provides a contained environment with all

dependencies  Independent of the

surrounding system.

Tested on multiple host systems: Win10,

ubuntu18, ubuntu20, Scientific Linux 7.

Transition to qtpy for same reasons

Centrally handled settings store, providing

(only) the relevant settings to all modules

 Modules can have self-contained design.

Container for connection-based multi-server

handling: Each connected server can have

its own settings, modules and views.

Optional interface for external tools to

control the whole GUI (too powerful at the

moment, can call almost every function in

the GUI, function chaining coming soon™).

DEVELOPMENT PROGRESS – VIMANAGER (V2.5)

E D E T H O U S E K E E P I N G – S O F TWA R E A N D I N F R A S T R U CT U R E 51 7 . 0 5 . 2 0 2 2

M A X P L A N C K S O C I E T Y | S E M I C O N D U C T O R L A B O R AT O RY ||||

User documentation is still far away.

Developer documentation is well on its way

but patchy: It is updated and extended

whenever I work on a class/function.

Modules/classes outside of my development

scope are mostly undocumented.

Current documentation style: google

For VSCode: Install the suggested extension

“autoDocstring”, all settings are included in

the workspace – helps maintaining the doc

style.

Documentation is created using the Sphinx

framework that can read python inline docs

as well as reStructuredText for arbitrary

documentation pages.

Documentation for now in Qt style.

Problem: Qt decided to leave documentation

on the back-burner, QtAssisstant degraded

in functionality and cannot even display a

styled html webpage as one would expect.

The documentation can be provided in nice

and styled html format and can even be

searched with full-text search as before.

DEVELOPMENT PROGRESS – DOCUMENTATION

E D E T H O U S E K E E P I N G – S O F TWA R E A N D I N F R A S T R U CT U R E 61 7 . 0 5 . 2 0 2 2

M A X P L A N C K S O C I E T Y | S E M I C O N D U C T O R L A B O R AT O RY ||||

DEVELOPMENT PROGRESS – DOCUMENTATION

E D E T H O U S E K E E P I N G – S O F TWA R E A N D I N F R A S T R U CT U R E 71 7 . 0 5 . 2 0 2 2

Qt Style Html Style

M A X P L A N C K S O C I E T Y | S E M I C O N D U C T O R L A B O R AT O RY ||||

DEVELOPMENT PROGRESS – DOCUMENTATION

E D E T H O U S E K E E P I N G – S O F TWA R E A N D I N F R A S T R U CT U R E 81 7 . 0 5 . 2 0 2 2

Qt Style Html Style

M A X P L A N C K S O C I E T Y | S E M I C O N D U C T O R L A B O R AT O RY ||||

From the developers point of view, most critical

housekeeping and slow control features seem

to be implemented or are well on the way.

So now it is up to YOU to decide:

• What do YOU want the software to do?

• What do YOU want it to look like?

• What do YOU need to be able to see at first

glance and what is astonishingly irrelevant

information while YOU use the software?

• What do YOU think needs improvement?

And how do YOU think it would work better.

DEVELOPMENT PROGRESS – NEXT STEPS

E D E T H O U S E K E E P I N G – S O F TWA R E A N D I N F R A S T R U CT U R E 91 7 . 0 5 . 2 0 2 2

M A X P L A N C K S O C I E T Y | S E M I C O N D U C T O R L A B O R AT O RY ||||

All(?) development progress is hosted on

HLL internal git server (gitea).

The software is distributed on several

machines inside (≥8) and outside (2) of HLL.

Outside machines need VPN access to reach

internal git.

Many developers are working on different

parts of the toolchain, some are more active

in committing and pushing their progress to

git than others  Please be more active and

adhere to flake8 and black coding style!

Issue tracking provided on the internal git as

well. So long as we do not have active users

outside of HLL members, that is fine.

Installation of the software framework is

automated locally in large parts, but has

steps where experts are actively needed

(system settings, git credentials).

The framework comes with its own python

and Qt versions inside a (Ana)conda

environment  mostly independent of other

software on the target machine.

Large installers are hosted outside the git

(blew repo up to 5GB, now back to 175MB)

using MPG Keeper and a two-step download

process to fetch the latest release.

The Gitea database holds:

18 users, 20 public keys, 31 repositories, 258 watches, 11064 actions,

186 accesses, 47 issues, 187 comments, 33 releases, 6 milestones,

49 labels, 7 teams, 3 attachments.

INFRASTRUCTURE – CURRENT STATE

E D E T H O U S E K E E P I N G – S O F TWA R E A N D I N F R A S T R U CT U R E 1 01 7 . 0 5 . 2 0 2 2

https://flake8.pycqa.org/en/latest/
https://black.readthedocs.io/en/stable/

M A X P L A N C K S O C I E T Y | S E M I C O N D U C T O R L A B O R AT O RY ||||

• Move internal git to externally accessible

and hosted service so that external

machines loose the VPN dependence.

• GWDG hosts a GitLab, but currently large

changes are applied to allowed usage and

features.

• MPDL is in slow negotiations with GitLab for

a MPG wide instance as well.

• HLL might acquire its own GitLab or GitHub

instance hosted by GWDG for the

foreseeable future.

• In addition this allows contributions/issue

raising from our users outside the HLL.

• Develop an automated installation and

upgrade process that can be triggered on

remote machines.

• At the moment ANSIBLE is investigated for

handling these tasks:

• Allows remote setup of the whole machine

(as soon as the operating system is available

and a connection to the HLL net is

established) as well as all software related

installation tasks.

• Allows triggering updates on remote

machines.

• Usability outside of the HLL net?

INFRASTRUCTURE – EXPECTED CHANGES

E D E T H O U S E K E E P I N G – S O F TWA R E A N D I N F R A S T R U CT U R E 111 7 . 0 5 . 2 0 2 2

Source control: System setup:

|

REQUESTS?

QUESTIONS?

BUG-REPORTS?

1 7 . 0 5 . 2 0 2 2E D E T H O U S E K E E P I N G – S O F TWA R E A N D I N F R A S T R U CT U R E 1 2

M A X P L A N C K S O C I E T Y | S E M I C O N D U C T O R L A B O R AT O RY ||||

Max Planck Society – Semiconductor Laboratory

Martin Hensel

Otto-Hahn-Ring 6

81739 München

Tel.: +49 (0)89 839400-0

Fax: +49 (0)89 839400-11

E-Mail: hll-info@hll.mpg.de

Internet: www.hll.mpg.de

THANK YOU FOR
YOUR ATTENTION
For questions please contact:

E D E T H O U S E K E E P I N G – S O F TWA R E A N D I N F R A S T R U CT U R E 1 31 7 . 0 5 . 2 0 2 2

