Entwicklung eines Verfahrens zur Alignierung des ATLAS-Myonspektrometers mit Spuren

Jens Schmaler, S. Bethke, J. Dubbert, O. Kortner, S. Kotov, H. Kroha

Max-Planck-Institut für Physik

8.3.2007

MPI München

Impulsmessung im ATLAS Myonspektrometer

- Impulsmessung aus der Spursagitta über drei Lagen von Präzisionskammern
- Ziel: $\Delta p_T/p_T < 10\%$ bis 1 TeV
- genaue relative Alignierung der Kammertripletts nötig
- maximaler Sagittafehler durch falsche Kammerposition:
 30 μm

Relevante Freiheitsgrade:

- Translationen in z- und r-Richtung
- Rotation in z-r-Ebene

Strategien für die Alignierung

Die Standard-Strategie

- absolute Positionen: mit geraden Spuren
- große Sektoren: optisches System f. relative Bewegungen
- kleine Sektoren: gekrümmte Spuren im Überlappbereich

Eine neue Studie:

Möglichkeit der Alignierung der großen Kammertripletts mit gekrümmten Spuren?

- Ergänzung zum optischen Alignierungssystem
- Verwendung von niederenergetischen Spuren aus dem Kalibrationsdatenstrom: $p_T>6~{\rm GeV}/c$ oder $p_T>20~{\rm GeV}/c$?

1. Schritt: Unabhängige Impulsmessung

Alternative zur Sagitta (f. $p \lesssim 20 \text{GeV}/c$)

Impuls aus dem Ablenkwinkel im Magnetfeld

$$\Delta \alpha = \alpha_{out} - \alpha_{in} = \frac{q}{p} \cdot \int_{\mathcal{P}} Bdl$$

- Myonkammern liefern Spur-Segmente
 - \rightarrow Richtung der Spur
- unabhängig von Kammertranslationen in zund r-Richtung
- systematischer Fehler:
 Verdrehung zwischen äußerer und innerer
 Kammer (muss zuvor bestimmt werden)
 - $\rightarrow \text{ zun\"{a}chst parallel angenommen}$

- Ausgangspunkt: Segment in der mittleren Kammer (o.E. in korrekter Position)
- Extrapolation in die innere und äußere Lage (mit Impuls aus Ablenkwinkel)
- Vergleich mit den dortigen Segmenten
 - → Translationen
 - → Rotationen

(getrennt für innere u. äußere Kammer)

z-Translation

Verteilung von $\Delta z = z_{\text{Extr.}} - z_{\text{Segment}}$ für viele Spuren: Mittelwert \Rightarrow Kammerverschiebung

 $\Delta r \Rightarrow \Delta z$ (abhängig von der Spursteigung m)

Gleichzeitige Bestimmung von Δz und Δr

Minimierung von

$$\chi^2 = \sum_{\text{Spuren}} \frac{\left[\Delta z_{\text{mess}} - \left(\Delta z - \frac{1}{m} \Delta r\right)\right]^2}{\sigma^2}$$

Translationen in r

 $\Delta r \Rightarrow \Delta z$ (abhängig von der Spursteigung m)

Rotationen

Verdrehung $\alpha_{\rm rot}$ aus der Steigungsdifferenz

$$\Delta m = m_{\text{Extr.}} - m_{\text{Segment}}$$

Gleichzeitige Bestimmung von Δz und Δr

Minimierung von

$$\chi^{2} = \sum_{\text{Spuren}} \frac{\left[\Delta z_{\text{mess}} - \left(\Delta z - \frac{1}{m} \Delta r\right)\right]^{2}}{\sigma^{2}}$$

Auflösung - Rotationen

- Monte-Carlo Studie mit 6 GeV und 20 GeV Myonen
- ideale Geometrie
- Breite der Verteilung von Δm
 - ⇒ statistischer Winkelfehler der Einzel-Extrapolation
- dominierend: Vielfachstreuung
- ullet benötigte Winkelgenauigkeit der Verdrehung: 10^{-5} rad
- Anzahl der Spuren um dies zu erreichen:
 - 6 GeV: $\left(\frac{200 \cdot 10^{-5}}{1 \cdot 10^{-5}}\right)^2 \approx 40000$
 - 20 GeV: $\left(\frac{70\cdot10^{-5}}{1\cdot10^{-5}}\right)^2 \approx 5000$

Auflösung - Translationen

- \bullet χ^2 -Fit mit unabhängigen Datensätzen: Standardabweichung liefert Auflösung der Methode
- ullet Δz , $\Delta r o$ Sagitta-Fehler (je nach Kammerposition)
- ullet 30 μ m Auflösung erreichbar mit \sim 1500 Spuren

Verkippung zw. innerer und äußerer Kammer

- Impulsmessung in der mittl. Kammer (f. $p \lesssim 6 \text{ GeV}/c$)
- → unabh. von Alignierung
 - $1/p_{\mathsf{Kammer}} \Leftrightarrow 1/p_{\mathsf{Winkel}}$ $\to \mathsf{Verkippung}$
 - benötigte Genauigkeit: $\sigma_{1/p}\approx 10^{-4}~{\rm c/GeV}$
- etwa 50000 Spuren erforderlich (

 ca. 3 h Laufzeit)
- Problem: syst. Fehlmessung von $\Delta \frac{1}{p} \approx 10^{-3}$ c/GeV ($\hat{=}$ 300 μ m Sagitta-Fehler)
 - falsche Spurrekonstruktion innerhalb der Kammer? → genauere Untersuchung nötig

Zusammenfassung

- erstmals wurde eine Methode zur Alignierung des ATLAS-Myonspektrometers mit gekrümmten Spuren entwickelt
- maximaler Sagitta-Fehler von 30 μ m erreichbar (wie benötigt), sobald innere und äußere Kammer parallel
- Verkippung zw. innerer und äußerer Kammer limitiert die Genauigkeit
 - \rightarrow Verständnis der systematischen Einflüsse notwendig