Test einer effizienten Methode zur Autokalibration der Orts-Driftzeit-Beziehung der ATLAS-Myon-Driftrohrkammern

Jörg v. Loeben, S. Bethke, J. Dubbert, M. Groh, Ö. Kortner, H. Kroha

Max-Planck-Institut für Physik (Werner Heisenberg Institut) München

8. März 2007

Sitzung: T 413.3, Donnerstag 17:20 Uhr

Kalibrierung der MDT-Kammern 1/2

Erforderliche Genauigkeiten

- ullet Position der Anodendrähte: $20~\mu\mathrm{m}$
- \bullet mittlere Einzelrohrauflösung: $80~\mu\mathrm{m}$
- \bullet Ortsauflösung einer MDT-Kammer: $40~\mu\mathrm{m}$

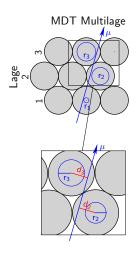
Kalibrierung der MDT-Kammern 2/2

Anforderung an die Kalibrierung

Genauigkeit der r(t)-Beziehung $< 20~\mu\mathrm{m}$

Motivation

- ullet r(t) ist von äußeren Parametern abhängig (Temperatur, B-Feld, Gasmischung, Gasdruck)
 - → häufige Neukalibrierung erforderlich
 - → eine Orts-Driftzeit-Beziehung pro Kammer nötig
- ullet r(t) außerdem abhängig von der Untergrundrate.
- keine unabhängige Messung der Myonspur vorhanden
- $\Rightarrow r(t)$ -Beziehung muß alleine mit den Informationen, die eine MDT-Kammer selbst liefert, bestimmt werden


Idee des Autokalibrationsverfahrens

- Bestimme eine erste Orts-Driftzeit-Beziehung $r(t)_{start}$ (Integration über Driftzeitspektrum, Genauigkeit $\sim 100~\mu \mathrm{m}$)
- Rekonstruiere gerade Myonspursegmente in je einer Multilage einer MDT-Kammer
- Verwende Information der Myonspur zur iterativen Verbesserung von $r(t)_{start}$

Analytische Autokalibrationsmethode 1/2

Prinzip der Autokalibration

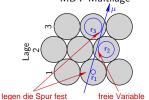
- Residuum $\Delta(t_k) := r(t_k) d_k$ d_k := Abstand k-ter Anodendraht \leftrightarrow Myonspur $r(t_k) := \text{Driftradius } k\text{-ter Treffer}$
- $r(t_k)_{start}$ besitzt systematische Fehler $\epsilon(t_k)$ $\Rightarrow r(t_k)_{start} = r(t_k)_{wahr} + \epsilon(t_k)$
- Analytische Beschreibung des Residuums des *l*-ten getroffenen Rohres:

$$\Delta_l = \sum_{k=1}^n m_{l,k} \epsilon(t_k)$$

 \Rightarrow Bestimme $\epsilon(t_k)$ zu allen Driftzeiten und korrigiere damit $r(t)_{start}$

Funktion

Analytische Autokalibrationsmethode 2/2


Analytische Beschreibung der Residuen

$$\Delta_l = \sum_{k=1}^n m_{l,k} \epsilon(t_k)$$
 (1)

Problem

• (1) i.A. nicht analytisch lösbar.

MDT-Multilage

Ausweg

Tests der Methode B-Feld

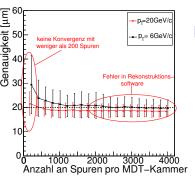
• Parametrisierung:

$$\epsilon(t_k) := \sum_{m=0}^{M} \beta_m t^m \text{ mit } M \sim 15$$

• Bestimmung von β_m durch χ^2 - Minimierung über einige tausend Myonspuren.

Iterative Verbesserung

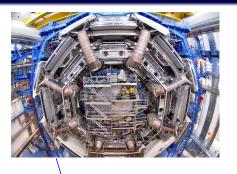
$$\bullet \ r(t)_{i+1} = r(t)_i - \epsilon_i(t)$$


Anzahl an benötigten Myonspuren - Monte Carlo

Monte Carlo Studie

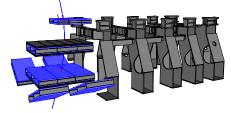
- Simulierte Myonen mit $p_T > 6$ bzw. 20 GeV/c
- Genauigkeit von $r(t)_{start} = 300 \ \mu m$

Tests der Methode

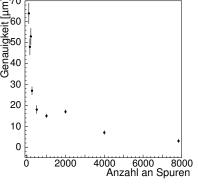


Ensemble Test aller Barrel-MDT-Kammern

- Erforderliche r(t)-Genauigkeit von $20~\mu m$ mit 700, bzw. 2000 Spuren
- Anzahl benötigter Spuren abhängig von p_T (Krümmung der Myonspuren im B-Feld)


Messung mit kosmischen Myonen

- Datennahme mit. kosmischen Myonen mit MDT/RPC-Kammern aus Sektoren 12. 13 und 14.
- Erste Messungen mit vollem Toroidfeld.



Anzahl an benötigten Myonspuren - Cosmics

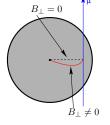
Studie mit Myonen aus kosmischer Höhenstrahlung

- Gemessen mit einer in ATLAS installierten MDT-Kammer
- \bullet $p_T^{cosmics} > 2 \; \mathrm{GeV/c}$

Autokalibration mit kosmischen Myonen

- $r(t)_{start}$ durch Integration (Genauigkeit $\sim 100~\mu \mathrm{m}$)
- $r(t)_{wahr}$ nicht bekannt, deshalb: $r(t)_{wahr} \rightarrow r(t)_{referenz} := \text{Bestimmt}$ mit allen Spuren (~ 20000) des betrachteten Runs.
- ullet rascher Abfall auf $<20~\mu\mathrm{m}$
- Vernachlässigbare Abweichung zu $r(t)_{referenz}$ ab ~ 8000 Spuren.

Einfluss des B-Feldes auf die r(t)-Beziehung



Einfluss des B-Feldes auf die Driftzeit

- B-Feld in den meisten Kammern stark inhomogen.
- Lorentzkraft bewirkt Ablenkung der Driftelektronen.
- Driftzeit wird verlängert:

$$\begin{split} t(r,\vec{B}) = & t(r,\vec{B}=0) & +\Delta t(r,\vec{B}) \\ \approx & t(r,\vec{B}=0) & +B_{\perp}^{2-\epsilon} \cdot \int\limits_{-2\pi}^{r} \frac{v_{B=0}^{1-\epsilon}(r')}{E^{2-\epsilon}(r')} \, dr'. \end{split}$$

• $\epsilon=0.1$ ist ein Maß der Inelastizität der Elektron CO $_2$ Stöße 1 (am Teststrahl gemessen)

Weg der Driftelektronen

¹T 509.9 Fr 16:05 - Ch. Valderanis

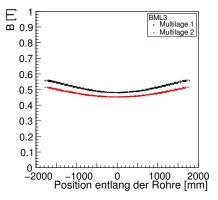
Korrektur des B-Feld Effektes

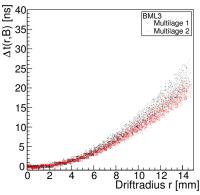
Einfluss des B-Feldes auf die Driftzeit

$$\Delta t(r,\vec{B}) \approx B_{\perp}^{2-\epsilon} \cdot \int\limits_{25}^{r} \int\limits_{\mu m}^{v_{B=0}^{1-\epsilon}(r')} dr'.$$
 (Lösung der Langevin-Gleichung)

Kalibrationsstrategie

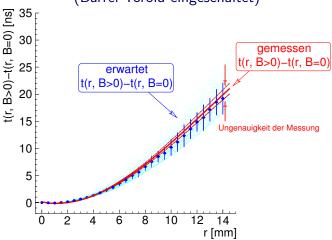
- Bestimme $r(t, \vec{B} = 0)$.
- Addiere $\Delta(t, \vec{B})$ in Regionen $B \neq 0$.
- Dadurch werden Inhomogenitäten berücksichtigt.


Schwierigkeit

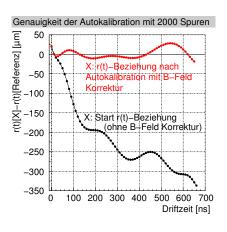

- $\Delta(t, \vec{B})$ ist abhängig von r(t).
- r(t) soll bestimmt werden.
- \Rightarrow Etwa 2–3 Iterationen notwendig.

Tests der Methode

Feldverteilung in einer MDT-Kammer - MC



Bestätigung der B-Feldkorrektur - Cosmics 1/2

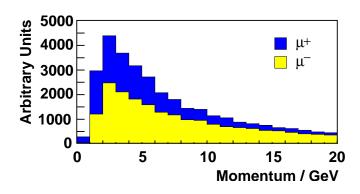

Ergebnisse mit Myonen aus kosmischer Höhenstrahlung (Barrel Toroid eingeschaltet)

⇒ Hervorragende Übereinstimmung mit Simulation!

Bestätigung der B-Feldkorrektur - Cosmics 2/2

- Referenz: $r(t, \vec{B} = 0)$
- r(t)-Beziehung nach Autokalibration mit B-Feldkorrektur stimmt innerhalb von $20\mu\mathrm{m}$ mit Referenz überein.
- Erster Test der B-Feldkorrektur mit kosmischen Daten aus ATLAS!

Zusammenfassung



Zusammenfassung

- Leistung der analytischen Autokalibrationsmethode wurde erfolgreich mit simulierten Daten getestet.
- Die Kalibrationsmethode erreicht geforderte Genauigkeiten bei den Orts-Driftzeit-Beziehungen bereits mit wenigen 1000 Myonspuren.
- Erste Tests mit Myonen aus kosmischer Höhenstrahlung bestätigen die Studien mit Monte-Carlo-Daten.
- Korrektur des B-Feldeffektes auf die Driftzeit funktioniert!
- ⇒Kalibrationsmethode wird in ATLAS verwendet werden

Backup - Impulsverteilung Cosmics

Backup - Integrationsmethode

Das Driftzeitspektrum ist die Häufigkeitsverteilung dN/dt der gemessenen Driftzeiten:

$$\frac{dN}{dt} = \frac{dN}{dr} \cdot \frac{dr}{dt}.$$

Bei gleichmäßiger Ausleuchtung der Driftrohre kann man dN/dr=N/R setzten:

$$\frac{dr}{dt} = \frac{R}{N} \cdot \frac{dN}{dt}$$

$$\Rightarrow r(t) = \frac{R}{N} \int_{0}^{t} \frac{dN}{dt'} dt'$$