

DAQ system for DCDB readout

S. Furletov

University of Bonn

5th International Workshop on DEPFET Detectors and Applications Valencia, 29 Sep 2010

Outline

- DAQ upgrade
- DCDB + Manuel's V4 readout
- DCDB + DHP readout
- Conclusion

DAQ upgrade for DCD readout

- DEPFET Data acquisition system has been upgraded for DCD readout:
 - New data format for RAW and Zero Suppressed data
 - Upgrade DQM for new matrices
 - → Upgrade offline software
 - → DEPFET DAQ is integrated into EUDET telescope DAQ
- DAQ supports now 3 systems:
 - CURO readout based on S3A and S3B readout board
 - → DCDB readout based on Manuel's FPGA board (Virtex 4)
- DEPFET telescope is based on S3B system
 - → DAQ allows to build the system from different components: S3A, S3B, DCD/Virtex4

DCDB + Virtex4 board

DEPFET test DAQ system

- DAQ is based on Linux network distributed client/server architecture which allows:
 - → share resources and tasks
 - → easy scale the system
 - → remote control and monitoring
 - → easy integration of other detectors

- DAQ uses USB 2.0 for data transfer from DEPFET R/O board to PC and TCP/IP to send data to Event Builder.
- The DAQ components are:
 - → a LINUX based USB driver for the DEPFET DAQ board
 - → a USB readout client transferring data to an event builder via network;
 - → an Event Builder assembling complete events and storing in a shared memory buffer;
 - → an event server send complete event to consumers (file writer, DQM, upper level DAQ, histogram server);
 - → online Data Quality Monitoring (DQM) package based on ROOT.

DEPFET Test Beam

- Jul-Aug 2008, August 2009
- CERN SPS H6 beam line
- 120 GeV pions

Test beam crew also important part of tests

DEPFET Telescope

EUDET Telescope + DEPFET as DUT

DEPFET with EUDET Telescope

EUDET project is a program to develop the infrastructure, to facilitate the experimentation and to enable the analysis of data using shared equipment and common tools.

JRA1 - test beam infrastructure (EUDET Telescope)

- 6 EUDET Modules MAPS Monolithic active pixel sensors :
 - \rightarrow 7.7x7.7 mm²,
 - → 256x256 pixels
 - → pitch 30x30 µm²
- MVME6100 PowerPC computer with general purpose acquisition boards (EUDRB) inside the VME64x crate connected to 1GB ethernet HUB
- EUDET DAQ server on MAC PC, 1GB Ethernet
- Trigger Logic Unit (TLU)
- DEPFET DUT with Readout PC
- About 2 million events collected

DEPFET DUT is steered by the EUDET DAQ software

EUDET Run Control DEPFET Run Control

DHP test system (Virtex5)

- development of an DHP 0.1 test system
 - → based on commercial evaluation board (ML-505)
 - → basis for PXD6 matrix r/o with DHP

- Xilinx ML505 (Virtex®-5 LXT)
- *PC communication:*
 - → PCI Express x1 (2.5Gb/s)
 - → 1Gb/s Ethernet

DCDB + DHP r/o, ETH version

Conclusion

- DEPFET Data acquisition system has been upgraded for DCD readout
- DQM has been upgraded for RAW DCD readout
- EUDAQ: "DEPFETConverterPlugin" has been upgraded for DCD readout.
- Offline software:
 - → Eutelescope: "DEPFETReader" has been upgraded for DCD readout *TO DO*:
- Virtex4 board:
 - → Matrix geometry to r/o channel mapping
 - → Upgrade DQM and offline software for data with DHP emulation
 - → Upgrade EUDAQ DQM Monitor
- Virtex5: integration DCDB + DHP readout based on ML-505 evaluation board

Backup Slides

Trigger and Event Rate

- A dedicated Trigger Logic Unit (TLU) accepts signals from the scintillators or external trigger and generates a signal to trigger the system.
- Each trigger carries a unique number and time stamp.

- H6 line with 120 GeV pions
- Coincidence rate of 2 scintillators is about 1000 Hz
- DAQ with slow readout sequence (readout full matrix 64x128) accepts 180-220 Hz depending on number of readout PCs.
- Data volume rate for 6 modules is about 20 GB / hour
- One disk of 500GB is filled in 1-2 days
- Hot swapping RAID system allows to change the disks without stopping taking data

Network DAQ, logic view

RUN Control

- Run control server can accept commands from different clients:
 - → Command line interface via Telnet
 - → TCL/TK or Root GUI
 - → Another program with TCP connection to Run Control

Data Quality Monitor

- Network Data Acquisition system allows to run powerful Data Quality Monitor on dedicated PC in real time
- DQM is based on ROOT:
 - → includes various data access methods: file, shared memory, network
 - → online data processing pedestal and common mode calculation, cluster reconstruction and simple tracking.
 - can also act as network histogram server
- advanced DQM functionality allows to find most of DAQ and DEPFET matrix problems during the run
- WEB interface for remote DQM

