

LMU - Cluster Universe Stefan Rummel

Electrical Services

5th International Workshop on DEPFET Detectors and Applications

29.09-30.09. Valencia

•Cables: low voltage, high speed

Patch Panel location

•PP geometry, layout

•TDR assumes:

- 5 Ohm/km high I \rightarrow AWG 12 3.3mm²
- 20 Ohm/km mid I \rightarrow AWG 18 0.9mm²
- 150 Ohm/km low I \rightarrow AWG 26 0.13mm²
- •High current (AWG 12):
 - Analog: DCD_AVDD, DCD_AGND, DCD_Amp Low
 - Digital: DCD_DVDD, DCD_DGND, DHP_DVDD, DHP_DGND
- Mid current (AWG 18):
 - Analog: CL_HIGH, CL_LOW, GATE_ON, GATE_OFF, V_SOURCE, DCD_REFIN
 - Digital: SW_DVDD, SW_DGND
- Low current (AWG 26):
 - Analog: V_BULK,V_CCG, HV, V_GUARD, 2*3 Sense (DCD_AVDD,DCD_AMP_LOW,V_SOURCE)
 - Digital: 2*2 Sense

TDR - cable

- •Look into an individual assembly
 - 40*30m = 1.2km is reasonable for production
 - Price from: 26/m (Prototyping 65/m, 12/m +Cu)
- Both digital and analog supplies in one cable
 - Try to separate both
 - Two shields
 - Analog digital
 - Towards outer world

• ~60cm² /half shell

• Low voltage: 20 cables per half

~60cm²

 $\sim 23 \text{ cm}^2$

• High speed links: 3 Cat6/7 cables per module \rightarrow 60 assuming dia. 7mm

• In total ~83cm² for electrical services on each side

Connectivity

- 12 differential high speed links
- \sim 30 wires (power, sense lines) up to 2.5A
- Availiable space depends strongly on length of Kapton flex ~ DHP driving capability, signal integrity
- •Baseline now: long flex (50cm) beyond QCS shield Hans will report on that
 - → Significant more space for services

Board to Board Connector selection

- Requierements:
 - 24 pins signals
 - 45 pins power, sense wires, overhead to distribute current
 - → Two 20 pin/row connectors or one 40 pin/row connector

SS4/ST4 connectors from Samtec:

1.3A @ 80degC 0.4mm pitch Width: 11.54mm@40 pins 19.54mm@80 Pins Mated hight: 4mm

First PP design proposal

- Using two 40 pin SS4/ST4 connectors
- Width is 25mm fits on a radius of 80mm (QCS has an outer radius of 95mm)
 Area is dominated by pads for soldering the wires
- •Force on PP:
 - 20mm diameter cable
 - 3 Cat6/7 cables (~7mm dia. each)
 - Cable strain relieve
- •Next steps / issues to check:
 - Mating/unmating force of connectors
 - Potting with epoxy?
 - Space assigned to pads solderability
 - Signal integrity

PP distributed on a radius of 93mmQCS final dimensions not knownOVP still missing

Stefan Rummel

- Long flex allows to go in regions with more space
 - Only thin flex between QCS shield and beam pipe
 - No connectors inside QCS shield
 - Width of flex can be increased to decrease resistance for high currents
 - Cables can be attached after assembly of PXD and QCS
- Combination of board to board connector with PCB gives significant more flexibility as commercial solutions
- Need a cable strain relieve and mounting structure for the PP

•

- Backup solution if signal integrity requires shorter flex
- Rigid part within desired distance + low profile connector (eg. SS4 with 2*20Pins, allows $\frac{1}{2}$ Signal/Ground ratio)
- Solution size can be 15*16mm2
- Profile hight: 4mm + 2* PCB thickness + wires
- Power lines can be connected outside of QCS (still long flex)

