Status of Mechanical Design

Martin Ritter

5th International Workshop on DEPFET Detectors and Applications September 29, 2010

Max-Planck-Institut für Physik

Mechanical Design First Vibration Tests Thermal stability

Mechanical Design

- No significant changes have been made to the design since last B2GM
 - defined inner envelope for Beampipe cooling
 - optimized cooling channel layout

Endflanges

First prototypes of the endflange design have been ordered

- ▶ 6 pieces of the complete "final" geometry for the backward endflange
- stainless steel DMLS production
- integrated cooling channels:
 - ► CO2 channel (blue)
 - Switcher channel: air channel for carbon tubes to blow directly on switchers and sensitive area (green)
 - DCD channel: air channel to induce airflow in the PXD (yellow)

Endflanges

First prototypes of the endflange design have been ordered and received.

- ▶ 6 pieces of the complete "final" geometry for the backward endflange
- stainless steel DMLS production
- integrated cooling channels:
 - ► CO2 channel (blue)
 - Switcher channel: air channel for carbon tubes to blow directly on switchers and sensitive area (green)
 - DCD channel: air channel to induce airflow in the PXD (yellow)

Mechanical Design

Characterisation currently performed by our workshop, first results:

- rough surface due to production process
- all 6 pieces almost identical, but relatively large deviations from design geometry (up to 0.4 mm)
- we ordered stainless steel, but material is magnetic like normal steel.
- threading and soldering works without problems
- ▶ all channels are useable

Thermal stability

Airflow test

Airflow tests were carried out for all prototypes

- pictures show 1 bar air pressure
- ightharpoonup some of the small outlet don't work until $\sim 1.5\,\mathrm{bar}$
- very similar results for all parts

Next Steps

Mechanical Design

- ▶ finish threading, solder pressure pipe to CO2 channel
- make leakage test of CO2 channel
- pressure test with 120 bar
- repeat leakage test
- send one set to Karlsruhe for cooling tests

First Vibration Tests

First simple test to check for vibrations of the module due to airflow

- ➤ 3 modules fixed to planar surface, using torque of 15 mNm
- sensitive area thinned to 50 μ m for all modules
- carbon tube attached parallel to modules
- applied 1 bar of air pressure to both sides of tube

measured frequency and magnitude of vibrations

Inner Layer Module

resonance frequency of \sim 300 Hz, amplitude of \sim 3 $\mu \mathrm{m}$

Outer Layer Module

Thermal Stability Tests

Goal: Verify Mechanical Design

Baseline: Modules screwed to endflange to ensure good thermal contact and positional stability

- Difference between thermal expansion of inner and outer layer \sim 20 μ m for $\Delta T = 40\,^{\circ}\mathrm{C}$
- we need to make sure that modules and glue remain stable over the whole temperature range

Precise position/distance measurement over "large" temperature range needed.

The Setup

We have prepared a setup to profile modules during temperature cycling

- granite reference plane with $\pm 2\,\mu\mathrm{m}$ planarity
- ▶ range of 200 mm \times 50 mm in XY-Plane, $< 2 \, \mu \mathrm{m}$ repeatability
- \blacktriangleright Z-range of 3 mm, resolution of $<1\,\mu\mathrm{m}$
- possibility to adjust Z-position by 50 mm
- temperature Range from 0 °C to 50 °C

Results

Results

Modules stable of large temperature range due to low torque

Results

Deviation at 10 $^{\circ}$ C, but not visible in next scan

Conclusions

First metal prototypes for the endflange recieved

- some issues with precision and material
- cooling channels look promising
- pressure tests scheduled
- hopefully ready for cooling tests soon

Simple vibration test carried out

- airflow cooling seems to be feasible
- more detailed study needed (realistic geometry)

Thermal stability checked

- screwed modules very stable
- further studies including heat-conductive paste

Vibrations, no Airflow

Spectrogram, no Airflow

Spectrogram, Inner Module

Spectrogram, Outer Module

Mechanical Design First Vibration Tests Thermal stability

Test Spectrogram using Sound sweep 20 - 1000 Hz

Repeatability of thermal tests

Results of two subsequent scans match nicely

Simple profiling of whole setup

Simple profiling of whole setup (XZ Projection)

