PXD Resolution in Large Occupancies

Z. Drásal^{*}, K. Prothmann⁺

*Charles University Prague ⁺ MPI Munich

Outline

- ILC Software (Marlin) → new implementation of background simulations + added effects of ganged pixels in simulation of PXD response
 - MergeBackground: new Marlin processor merging signal Mokka hits with background hits (Belle II QED background) into common ILC collection (PXD, SVD, CDC)
 - SiPxlDigi: Marlin processor improved with simulation of effects of ganged pixels
- PXD resolution studies in large QED background (~ % PXD occupancy studies) performed – preliminary results
 - Resolution studies
 - Efficiency studies (resp. inefficiency due to high background)
 - Impact parameter studies (not complete yet)

ILC Software for Belle II – MergeBackground processor

• Marlin processor: MergeBackground

- merges together:
 - collection of signal hits (physics events)
 - collection of background hits (QED background) → overlay several *.slcio files to get required (expected) occupancy

Simulations at Large Occupancies

- Simulated single muon tracks (Mokka, 500MeV) in standard ILC software chain
- Merged signal (muons) & background hits (Belle II QED background) with occupancies:
 - 0 % (no background)
 - 5-6 %
 - 10 12 %
 - 15 18 %
- Studies of DEPFET (no ADC) w/o ganged pixels (2 pixel signals summed up and read-out by common drain; 0 – 400 row, 1 – 401 row, 2 – 402, …):
 - resolutions in R-Phi & Z, resp. their degradation in "harsh" background
 - TrackerHit efficiency (hit is OK if found by clustering algorithm & if major contribution to the signal is from simulated SimTrackerHit) → nonefficiency degrades resolution: hit found, but not coming from original particle (background effect – hits overlayed) or not found at all (signal/noise too low → clustering doesn't find it)
 - impact parameter resolution & track efficiency

Results: PXD Resolution in R-Phi in Large Occupancies

29th Sep 2010

Results: PXD Resolution in Z in Large Occupancies

29th Sep 2010

Results: PXD Cluster Size in Large Occupancies

29th Sep 2010

Results: PXD Efficiency in Large Occupancies

• Left: PXD – noGanged x Right: PXD – ganged

Results: Tracking Efficiency

PXD with ganged pixels + SVD: all in 5 – 6 % occupancy

Results: Track Multiplicity

• PXD w/o ganged pixels + SVD: all in 5 – 6 % occupancy

29th Sep 2010

Results: Z0 Impact Parameter Resolution

PXD w/o ganged pixels + SVD: all in 5 – 6 % occupancy

Conclusions

- Tools for background studies implemented (MergeBackground processor)
- Tools for simulation of ganged pixels implemented (SiPxIDigi processor)
- Preliminary studies in high QED background performed, but too high occupancies
 → necessary to complete the study for 1%, resp. 2% QED background

Deposited Energy in PXD

75(μm) - 90deg, 90(μm) - 56deg, 105(μm) - 45deg, 120(μm) - 38deg ...

