

National Taiwan University Leung Center for Cosmology and Particle Astrophysics

Askaryan Radio Array (ARA) Capability Simulation: Event Reconstruction of Ultra High Energy Neutrinos

ShangYu SUN

Advised by Pisin Chen

Guided by Melin Huang, Jiwoo Nam

Neutrino Cosmology Group

09/11/19

Outline

- Motivation: identify cosmic accelerators with UHE(10¹⁷eV to 10²⁰eV) neutrinos
- Detection of UHE neutrinos in ARA
- □ Simulation of reconstruction capability of ARA
- Optimization of the detection efficiency and neutrino angular resolution

Approach the Topic "Cosmic Accelerators" with UHE Neutrinos

bottom-up scenario

GZK Process (Greisen, Zatsepin, Kusmin)

neutrinos guaranteed by UHECR

John A. Cairns et.al., Simulation of the GZK neutrino flux from cosmic ray spectrum, 2005/07/14

From ANITA collaboration

On Earth, we might, with UHE neutrino, **point back** to cosmic accelerators. Thus, the angular resolution is particularly important to identify these accelerators.

To Detect UHE Neutrino: with Radio Chenenkov Wave from Askaryan Effect

- UHE neutrino has charge or neutral current interaction with mater, causing particle shower.
- Askaryan Effect: shower induced by high energy particle has 20% excess of negative charges.
- Fast moving charges in matter result in Cherenkov radiation.
- ARA will detect strong signal of coherent radio wave.

Conceptual Design of ARA

- Ice in Antarctic is a massive target for neutrino to interact with.
- RF band is coherent and strong among all the signals from the interaction.
- RF wave attenuation is small in ice (~1km). Low temperature. Radio quiet.
 => Choose Antarctic as experiment site

Figure 2: Planned layout of the 37 ARA stations with respect to the South Pole Station and associated sectors.

Figure 4: ARA Station layout and antenna cluster geometry.

From ARA proposal

ShangYu SUN

Simulation Setups: ARA Geometry and Parameters Generated

Simulation Methods: the Waveform

256 bins, 100 ns

Chi Square for the Reconstruction of Shower Vertex

ShangYu SUN

9

Reconstruction of Neutrino Direction

$$\chi^{2} = \sum_{\text{all triggered antennas, }i} \left(\frac{(V_{i}^{obs.} - V_{i}^{hypos.})}{\sigma_{V}} \right)^{2}$$

$$V_{i}^{obs.} : \text{observation data}$$

$$V_{i}^{hypos.} (\vec{x}_{rec.}, V_{0}^{hypos.}, \vec{v}_{hypos.}) = \frac{V_{0}^{hypos.} e^{-\sqrt{(\vec{x}_{rec.} + \vec{x}_{i})^{2}} / \text{attenuation length}}{D_{0} \sqrt{(\vec{x}_{rec.} - \vec{x}_{i})^{2}}} \cdot A \cdot e^{-(\theta - 56^{\circ})^{2}/2\sigma^{2}}, \ \theta : angle(\vec{v}_{hypos.}, \vec{x}_{rec.} - \vec{x}_{i})$$

$$\cdot \begin{cases} \sin \alpha, \text{ for H pol antenna} \\ \cos \alpha, \text{ for V pol antenna} \end{cases}$$

$$\theta (\vec{v}_{hypos.}, \vec{x}_{rec.} - \vec{x}_{i})$$

ShangYu SUN

Neutrino Angular Resolution

Optimization: detection efficiency versus resolution variables: antenna spacing, station spacing

Neutrinos with higher energy makes signals travel farther away: they provide larger effective area

To Optimize Detection Efficiency

Neutrino Angular Resolution vs. Antenna Spacing, Station Spacing, Neutrino Energy

Summary

Detection efficiency: grows when station spacing increases. For higher neutrino energy level, larger station spacing is required to saturate the growing of detection efficiency.

□Neutrino angular resolution: when the station spacing decreases or the antenna spacing increases, the resolution, gets better.

Geometry Optimization

Priority: 1.effective area 2. neutrino angular resolution Variables: 1.antenna spacing 2.station spacing Conclusion:

Station spacing 1.33 km makes effective area almost saturated for neutrinos with energy under 10^{18.5} eV.

Antenna spacings equal to larger than 30m make neutrino angular resolutions better. Their resolution ranges from 5 to 15 degrees for different energy levels(10^17.5 to 19.5).

BACKUP *RF Wave Property in Ice: Field Attenuation Length*

17

BACKUP *RF Wave Property in Ice: Ddifferential Refraction Index*

BACKUP Askaryan Effect in Ice: Field strength vs. Frequency in Radio Band and Radiative Cherenkov Power vs. Shower energy

ShangYu SUN

Backup Slide

BACKUP Askaryan Effect in Ice: Angular Dependence of Cherenkov Field Strength

ShangYu SUN

BACKUP

ARA: Who Does What

~80 people, 16 institutes

Table 1: Collaboration personnel who will participate in array development and data analysis.

-	Institution	Funding	Personnel Category [†]			
_		0	[1]	[2]	[3]	[4]
Am	US Participants:					
	Univ. Wisconsin	NSF	2	1	1	2
	Univ. Maryland	NSF	2	1	2	2
	Univ. Hawaii		2	2		
	Univ. Kansas	NSF	1		2	12
	Univ. Delaware	NSF	1	1	1	1
	Ohio State Univ.	NSF	1	1		
	Univ. Alabama	NSF	1			1
	Colorado St. Univ.	NSF	1		1	2
	Penn St Univ.	NSF	1		1	
	Univ. Nebraska	NSF	1			1
$\Delta c(2)$	Taiwan:					
A3(Z)	Nat'l Taiwan Univ.	LeCosPA NSC	1	2	7	1
	Belgium:					
	Univ. Bruxelles	FNRS	2	1	1	1
Fu(3)	United Kingdom:					
	Univ. Coll. London		2	1	2	2
	Japan:					
	Chiba Univ.	JSPS	1	1	1	1
	Germany:					
	DESY	BMBF	1		1	
	Univ. Wuppertal	BMBF	1		1	

[†][1] Senior Personnel;[2] Postdocs;[3] Grad. Students; [4] Undergrads.

ARA proposal

Table 3: Milestones for the array construction.

ID	Milestone	Owner	Date
1	Preliminary System Design Review.	UMD	Sep
	Include all major subsystem assem-		2010
	blies.		
2	Ship Testbed prototype instrumenta-	UH	Oct
	tion to Pole		2010
3	Design, construct and ship to Pole	UW	Aug
	the Ice Drill		2011
4	Design, integrate, test and ship 4	UH	Sep
	pre- production In Ice Instrumenta-		2011
	tion clusters after Shipment Readi-		
	ness Review.		
5	Design, construct and test Remote	KU	Sep
	Stations. Ship prototype to Pole af-		2011
	ter Shipment Readiness Review.		
6	Commission Ice Drill	UW	Dec
			2011
7	Install and Commission 4 Radio Sta-	UW	Feb
	tions at Pole		2012
8	Final Critical Design Review & Pro-	KU	Apr
	duction Readiness Review		2012
9	Instrumentation Shipment Readi-	UW	Sep
	ness Review. Initial verification of		2012
	data stream showing detector will		
	meet Science objectives.		
10	Instrumentation Shipment Readi-	UMD	Sep
	ness Review. Final verification of		2013
	data stream showing detector will		
	meet Science objectives.		_
11	Integrated, test and ship 33 produc-	UW	Sep
	tion In Ice Instrumentation clusters.		2014

ARA proposal

BACKUP ARA: Acceptance, Event Rate, Flux

1 0 21

1022

", minimal GZK

cutoff at 10 Zev

TITU

BACKUP **Resolution of Shower Vertex**

dx, dy, dz (reconstructed-generated)

Optimization: detection efficiency versus resolution BACKUP variables: antenna spacing, station spacing

station spacing decreases	target volume decreases	detection efficiency decreases
antenna spacing	the number of triggered antennas increases	resolution better
	the signal differences between triggered antennas decreases (arrival time differences, voltage differences)	resolution worse

BACKUP Signal Travelling Distance Distribution (from the shower location to triggered antennas)

BACKUP

Compare ARA with ARIANNA

Antarctic Ross Ice Shelf ANtenna Neutrino Array (ARIANNA)

simulation of angular resolution of neutrino direction

ShangYu SUN

ARA

BACKUP Role of UHE Neutrino in Astrophysical Observation

10²⁰eV protons from AGN cannot be seen 10²⁰eV protons from local group can be seen

For the observation of UHE events, photons and protons only unveil 1% mysteries of our universe !

UHE neutrino can be a better choice because of its small cross section and charge-neutral property.

P. Gorham, 1st International Workshop on the Saltdome Shower Array (SLAC, 2005).

ShangYu SUN

BACKUP Effect of Requiring "# of Triggered Station >1"

BACKUP Is "the # of triggered stations" strongly related to "the neutrino angular resolution"?

A larger # of triggered stations guarantees a better resolution

BACKUP Distribution of the Number of Triggered Stations

