Silicon detectors for high energy physics

Michal Tesař

NPI ASCR

FNSPE CTU in Prague

17th IMPRS Workshop

7/19/2010

Michal Tesař (FNSPE CTU)

Silicon detectors for high energy physics

Contents

1 STAR Heavy Flavor Tracker - *D*⁺ meson simulations

- Physical motivation
- Detector design
- Simulations
- Results
- 2 Silicon photomultipliers
 - Architecture and operation
 - Testing and results

STAR Heavy Flavor Tracker - D⁺ meson simulations

The new detector Heavy Flavor Tracker (HFT) for STAR:

- will improve measurements with heavy flavor hadrons for low p_T
- pixel part uses technology of CMOS monolithic APS
- main purpose: systematic study of QGP

STAR Heavy Flavor Tracker - D⁺ meson simulations

The new detector Heavy Flavor Tracker (HFT) for STAR:

- will improve measurements with heavy flavor hadrons for low p_T
- pixel part uses technology of CMOS monolithic APS
- main purpose: systematic study of QGP

Our work:

- survey capabilities of the new design of direct D⁺ meson reconstruction
- the goal: maximize D⁺ signal significance

< □ > < □ > < □ > < □ >

STAR Heavy Flavor Tracker - D⁺ meson simulations

The new detector Heavy Flavor Tracker (HFT) for STAR:

- will improve measurements with heavy flavor hadrons for low p_T
- pixel part uses technology of CMOS monolithic APS
- main purpose: systematic study of QGP

Our work:

 survey capabilities of the new design of direct D⁺ meson reconstruction

• the goal: maximize D⁺ signal significance

< □ > < □ > < □ > < □ >

Heavy quarks in ultrarelativistic heavy-ion collisions:

- are produced in early stages of the collision
- their amount is not modified in later stages of the QGP evolution
- → heavy flavor hadrons carry the information about the initial phase

Heavy quarks in ultrarelativistic heavy-ion collisions:

- are produced in early stages of the collision
- their amount is not modified in later stages of the QGP evolution
- → heavy flavor hadrons carry the information about the initial phase

Important topics to study:

- high p_T hadrons suppression and jet quenching (R_{AA})
- collective expansion and fireball thermalization (v_2)

Heavy quarks in ultrarelativistic heavy-ion collisions:

- are produced in early stages of the collision
- their amount is not modified in later stages of the QGP evolution
- → heavy flavor hadrons carry the information about the initial phase

Important topics to study:

- high p_T hadrons suppression and jet quenching (R_{AA})
- collective expansion and fireball thermalization (v_2)

The purpose of the HFT:

- improve precision of measurements of these quantities
- → do the direct topological reconstruction of heavy flavor hadrons

The STAR detector and the HFT

RHIC: collisions p+p, d+Au, Cu+Cu, Au+Au při $\sqrt{s_{NN}}$ = 20, 62, 130, 200 GeV

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The STAR detector and the HFT

RHIC: collisions p+p, d+Au, Cu+Cu, Au+Au při $\sqrt{s_{NN}}$ = 20, 62, 130, 200 GeV

Michal Tesař (FNSPE CTU)

Silicon detectors for high energy physics

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Three detector subsystems of the HFT:

• Pixel detector (PXL), low mass monolithic APS,

(2 layers, $r_1 = 2.5 \text{ cm}, r_2 = 8 \text{ cm}$)

• Intermediate STAR Tracker (IST), fast single-sided strip detector,

(1 layer, r = 14 cm)

• Silicon Strip Detector (SSD), double-sided strip detector,

(1 layer, r = 23 cm), (already fabricated)

These detectors along with the Time Projection Chamber (TPC) form the STAR inner tracking system

< □ > < □ > < □ > < □ >

Simulations

Properties of the simulated data

- 10 000 events
- collisions Au + Au at $\sqrt{s_{\rm NN}} =$ 200 GeV (HIJING)
- 5 embedded D^+ with flat p_T spectra in each event
- latest STAR geometry with the HFT ("upgr15")

D^+ properties

- D⁺ rest mass is 1869 MeV/c²
- studied decay channel: $D^+ \rightarrow K^- + \pi^+ + \pi^+$
- B.R. = 9.51 %
- $c\tau = 312 \ \mu m$

D⁺ decay and explanation of cut quantities

 $D^+ \rightarrow K^- + \pi^+ + \pi^+$

Michal Tesař (FNSPE CTU)

Silicon detectors for high energy physics

7/19/2010 8 / 17

- 4 ∃ →

D⁺ reconstruction efficiency

In the plot used best significance cuts $(1.0 < p_T < 1.5)$:

- 1819 < M_{inv} < 1919 MeV/c²
- gDCA > 115 μm

• $\cos\theta > 0.997$

DCA_{V0}/resolution< 2</p>

Michal Tesař (FNSPE CTU)

Silicon detectors for high energy physics

Michal Tesař (FNSPE CTU)

Silicon detectors for high energy physics

7/19/2010 10 / 17

- HFT uses low mass APS, single- and double-sided strip detectors
- HFT will extend STAR measurement capabilities:
 - partonic energy loss
 - charm collectivity
- → systematic study of QGP at RHIC-II luminosity

<i>p</i> _{<i>T</i>} [GeV/c]	signal significance
0.5 - 1.0	15.7
1.0 - 1.5	42.2
1.5 - 2.0	22.7

Expected D^+ signal significance for 100 M

central Au + Au events at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Expected D^+ signal for 100 M central Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV

Michal Tesař (FNSPE CTU)

Silicon detectors for high energy physics

7/19/2010 12 / 17

Silicon photomultipliers (SiPM)

Introduction

- semiconductor detectors for photons in UV, visible and IR range
- single photon detection capability

Silicon photomultipliers (SiPM)

Introduction

- semiconductor detectors for photons in UV, visible and IR range
- single photon detection capability

Advantages in comparison with photomultiplier tubes (PMT)

- small size, (activ area \sim few mm², thickness \sim 1 mm)
- low supply voltage, (tens of volts)
- insensitive to magnetic field

Silicon photomultipliers (SiPM)

Introduction

- semiconductor detectors for photons in UV, visible and IR range
- single photon detection capability

Advantages in comparison with photomultiplier tubes (PMT)

- small size, (activ area \sim few mm², thickness \sim 1 mm)
- low supply voltage, (tens of volts)
- insensitive to magnetic field
- consist of an array of avalanche photodiodes (APD) connected in parallel
- operation in Geiger mode ⇒ binary detector

Architecture and operation

Silicon detectors for high energy physics

イロト イヨト イヨト イヨト

SiPM testing

In Max Planck Institut for Physics (MPI) in Munich

- samples of second development series built in MPI
- detectors with bulk integrated quenching resistor
- checking of basic characteristics
- measurement of response to 800 nm laser illumination

Measurement results

- check measurements showed proper operation of the SiPM samples
- better results for cooled down devices, for larger arrays cooling necessary
- for "double flower" obtained encouraging results concerning possibility of single photon detection

STAR Heavy Flavor Tracker - D^+ meson simulation

- obtained excellent results for direct topological reconstruction of D⁺ at low p_T (signal significance ~ 20)
- the results show capability of the new STAR upgrade of improving charm measurement precision

Silicon photomultipliers

- check measurements successfully done
- obtained encouraging results concerning possibility of single photon detection