De Sitter Vacua in $\mathcal{N} = 8$ Supergravity

Gianluca Inverso M.Sc. thesis with supervisor Dr. Gianguido Dall'Agata

> IMPRS EPP Workshop, Munich 19 July, 2010

Conclusions

Motivation

We use a new approach to search for (stable) de Sitter vacua in D = 4 maximal supergravity

Results

Conclusions

Motivation

We use a new approach to search for (stable) de Sitter vacua in D = 4 maximal supergravity

Dark Energy Accelerated expansion of the universe at the present epoch

► candidate: cosmological constant $\Lambda_{cosm} > 0$ $\hookrightarrow de Sitter spacetime$

Results

Conclusions

Motivation

We use a new approach to search for (stable) de Sitter vacua in D = 4 maximal supergravity

- Dark Energy Accelerated expansion of the universe at the present epoch
 - ► candidate: cosmological constant $\Lambda_{cosm} > 0$ \hookrightarrow de Sitter spacetime
- Primordial inflation
 Slow roll inflation

Conclusions

De Sitter spacetime

Vacuum solution of Einstein equations for $\Lambda_{cosm} > 0$

$$ds^2 = -dt^2 + e^{Ht}dl^2$$
, $H^2 = \Lambda_{cosm}/3$.

Slow roll inflation

Conclusions

Supergravity (SUGRA)

Supersimmetry (SUSY) + gravity (GR) \Rightarrow every particle has *superpartners*:

 $\textbf{bosons} \overset{\text{susy}}{\longleftrightarrow} \textbf{fermions}$

- SUGRA models descend from String Theory
 - low energy limit
 - compactifications of the extra dimensions
- de Sitter vacua in SUGRA \longrightarrow test for ST models
- better theoretical framework for Inflation and Dark Energy

$\Lambda_{cosm} > 0$ in Supergravity

$SUGRA \supset RG \Rightarrow de Sitter vacua in supergravity$

 $\Lambda_{\mathit{cosm}} > 0 \text{ in supergravity } \textit{only if there is a scalar potential } V(\phi)$ stationary points \longrightarrow vacuum solutions

$$V(\phi) = V(\phi_0) + \frac{1}{2}V''|_{\phi_0}(\phi - \phi_0)^2 + \dots$$

$$V'|_{\phi_0}=0, \quad V(\phi_0)\equiv\Lambda_{cosm}$$

difficulty: stable de Sitter vacua in extended supergravity

Gianluca Inverso, Università degli Studi di Padova

$\mathcal{N} = 8$ Supergravity

We look for de Sitter vacua of maximal SUGRA in D = 4($\mathcal{N} = 8$ supercharges Q^i).

- origin in terms of String Theory is well understood (at least for some models¹)
- matter content is fixed, although not realistic
 - only freedom: choice of G_{gauge}
 - 70 real scalar fields φ^{ijkl}
- $susy \Rightarrow potential V(\phi)$ only depends on G_{gauge}
- good testing ground for our method

¹ D'Auria, Ferrara, Trigiante, JHEP, 01:081, 2006.

Our method

We considered *gauged* maximal supergravity in 4 dimensions: *Einstein–Hilbert* + *Yang–Mills*

- ▶ gauge covariant derivatives: $\partial_{\mu} o D_{\mu} = \partial_{\mu} + g A_{\mu}$
- ▶ add mass-like terms in $\delta_{{ t SUSY}}$ and in ${\mathcal L}$, ${\mathcal O}(g)$
- ► susy \Rightarrow $V(\phi)$, $\mathcal{O}(g^2)$

Explicit calculations for $G_{gauge} = (C)SO(p, q, r)$, (p+q+r=8)

$$U \in \textit{G}_{\textit{gauge}} \Leftrightarrow \textit{U}\theta\textit{U}^{\textit{T}} = \theta, \quad \theta = \begin{pmatrix} \mathbb{1}_{p \times p} & \\ & -\mathbb{1}_{q \times q} \\ & & \text{O}_{r \times r} \end{pmatrix}$$

Our method

We considered *gauged* maximal supergravity in 4 dimensions: *Einstein–Hilbert* + *Yang–Mills*

- ▶ gauge covariant derivatives: $\partial_{\mu} o D_{\mu} = \partial_{\mu} + g A_{\mu}$
- ▶ add mass-like terms in $\delta_{{ t SUSY}}$ and in ${\mathcal L}$, ${\mathcal O}(g)$
- ► susy \Rightarrow $V(\phi)$, $\mathcal{O}(g^2)$

Explicit calculations for $G_{gauge} = (C)SO(p, q, r)$, (p+q+r=8)

$$U \in \textit{G}_{\textit{gauge}} \Leftrightarrow \textit{U}\theta\textit{U}^{\textit{T}} = \theta, \quad \theta = \begin{pmatrix} \mathbb{1}_{p \times p} & \\ & -\mathbb{1}_{q \times q} \\ & & 0_{r \times r} \end{pmatrix}$$

The potential is completely parametrized by θ : $V(\phi, \theta)$

Scalar fields ϕ are coordinates on the manifold $\mathcal{M}_{\phi} = E_7/SU(8)$ Isometry transformations on \mathcal{M}_{ϕ} can also act on θ :

$$\widetilde{\phi} = U\phi \quad \longleftrightarrow \quad \widetilde{\theta} = U^{-1}\theta \qquad U \in ISO(\mathcal{M}_{\phi})$$

The potential is invariant!

$$V(U\phi,\theta)=V(\phi,U^{-1}\theta)$$

Scalar fields ϕ are coordinates on the manifold $\mathcal{M}_{\phi} = E_7/SU(8)$ Isometry transformations on \mathcal{M}_{ϕ} can also act on θ :

$$\widetilde{\phi} = U\phi \quad \longleftrightarrow \quad \widetilde{ heta} = U^{-1} heta \qquad U \in ISO(\mathcal{M}_{\phi})$$

The potential is invariant!

$$V(U\phi,\theta) = V(\phi, U^{-1}\theta)$$

\Rightarrow we look for stationary points at $\phi = 0$ and modify θ

Results

We look for stationary points at $\phi = 0$ and modify θ

Can we find vacua $\forall \phi$? YES: \mathcal{M}_{ϕ} is a homogeneous space^{*}

Advantages:

- calculate the derivatives of $V(\phi)$ only once
- obtain all 70 mass² eigenstates and eigenvalues
 - \hookrightarrow vacuum stability
- no numerical approximations

*however: assumption on gauge connection not containing dual fields $o \ \phi \in \mathbb{R}$

First derivative

$$V(\phi) = g^2 \left(\frac{1}{24} A_2^{jkl} A_2^{i}_{jkl} - \frac{3}{4} A_1^{ij} A_{1ij} \right)$$

Shifts in δ_{SUSY}

$$V'(\phi) \propto \Omega^{ijkl}|_{selfdual}$$
$$\Omega^{ijmn} \equiv \frac{3}{4} A_{2l} {}^{u[ij} A_{2u}{}^{mn]l} - A_{1}{}^{l[i} A_{2l}{}^{jmn]}$$

After some algebra:

$$\Omega^{ijkl}|_{\phi=0} = \frac{1}{16}\operatorname{Tr}(\overbrace{\Gamma^{ijkl}}^{Cliff(8)}\theta^2) - \frac{1}{32}\operatorname{Tr}(\theta)\operatorname{Tr}(\Gamma^{ijkl}\theta)$$

 \Rightarrow vacuum condition: $\Omega^{ijkl}|_{\phi=0}=0$

Gianluca Inverso, Università degli Studi di Padova

Second derivative

 $V^{\prime\prime}(\phi_0) ~
ightarrow$ effective masses for $\Delta \phi^{ijkl} = \phi^{ijkl} - \phi_0^{ijkl}$

$$\begin{split} V''|_{\phi=0} &\propto M_{ijkl}{}^{mnpq} = \left(\frac{1}{8}\operatorname{Tr}(\theta^2) + \frac{1}{16}(\operatorname{Tr}\theta)^2\right) \delta^{mnpq}_{ijkl} \\ &- \frac{2}{3}A_2{}^{[m}{}_{[ijk}A_2{}_l]{}^{npq]} + \frac{3}{16}\delta_{[ij}{}^{[mn}\operatorname{Tr}\left(\Gamma^{pq]}\theta\Gamma_{kl}]\theta\right) \\ &- \frac{3}{4}\delta_{[ij}{}^{[mn}\operatorname{Tr}\left(\Gamma_{k}{}^{p}\theta\Gamma^{q]}{}_{l]}\theta\right) \end{split}$$

Results

Conclusions

Results

Vacuum condition
$$V'|_{\phi=0} = 0 \longrightarrow$$
 equation for θ :

$$2\theta^2|_{traceless} = \operatorname{Tr} \theta \, \theta|_{traceless}$$

Value of the potential at the vacuum:

$$V(\phi=0)=\frac{1}{4}\operatorname{Tr}\theta^2-\frac{1}{8}(\operatorname{Tr}\theta)^2$$

Invariant under GL(8): $\theta \to G\theta G^{-1}$, $G \in GL(8, \mathbb{R})$ \Rightarrow condition on the eigenvalues of θ

Gianluca Inverso, Università degli Studi di Padova

$$V'|_{\phi=0} = 0 \quad \Leftrightarrow \quad 2\,\theta^2|_{traceless} = \operatorname{Tr} \theta \; \theta|_{traceless}$$

5 diagonal solutions (up to an overall factor)

G _{gauge}	eigenvalues $(heta)$	$\Lambda_{cosm} = V(0)$	type of vacuum
SO(8)	(1, 1, 1, 1, 1, 1, 1, 1, 1)	< 0	anti de Sitter
	(5, 1, 1, 1, 1, 1, 1, 1)	< 0	anti de Sitter
SO(3, 5)	(-3, -3, -3, 1, 1, 1, 1, 1)	> 0	de Sitter
SO(4, 4)	(-1, -1, -1, -1, 1, 1, 1, 1)	> 0	de Sitter
CSO(2, 0, 6)	(1, 1, 0, 0, 0, 0, 0, 0)	= 0	Minkowski

$$V'|_{\phi=0} = 0 \quad \Leftrightarrow \quad 2\,\theta^2|_{traceless} = \operatorname{Tr} \theta \; \theta|_{traceless}$$

5 diagonal solutions (up to an overall factor)

G _{gauge}	eigenvalues $(heta)$	$\Lambda_{cosm} = V(0)$	type of vacuum
SO(8)	(1, 1, 1, 1, 1, 1, 1, 1, 1)	< 0	anti de Sitter
	(5, 1, 1, 1, 1, 1, 1, 1)	< 0	anti de Sitter
SO(3, 5)	(-3, -3, -3, 1, 1, 1, 1, 1)	> 0	de Sitter
SO(4, 4)	(-1, -1, -1, -1, 1, 1, 1, 1)	> 0	de Sitter
CSO(2, 0, 6)	(1, 1, 0, 0, 0, 0, 0, 0)	= 0	Minkowski

2 de Sitter vacua + 1 Minkowski

$$V'|_{\phi=0} = 0 \quad \Leftrightarrow \quad 2\,\theta^2|_{traceless} = \operatorname{Tr} \theta \; \theta|_{traceless}$$

5 diagonal solutions (up to an overall factor)

G _{gauge}	eigenvalues $(heta)$	$\Lambda_{cosm} = V(0)$	type of vacuum
SO(8)	(1, 1, 1, 1, 1, 1, 1, 1, 1)	< 0	anti de Sitter
	(5, 1, 1, 1, 1, 1, 1, 1)	< 0	anti de Sitter
SO(3, 5)	(-3, -3, -3, 1, 1, 1, 1, 1)	> 0	de Sitter
SO(4, 4)	(-1, -1, -1, -1, 1, 1, 1, 1)	> 0	de Sitter
CSO(2, 0, 6)	(1, 1, 0, 0, 0, 0, 0, 0)	= 0	Minkowski

 θ in a non-standard form \Rightarrow corresponds to $\phi \neq 0$ these vacua were already known for $\phi \neq 0 \Rightarrow$ our method works!

> C. M. Hull and N. P. Warner, Nucl. Phys., B253:675, 1985 C. M. Hull, Class. Quant. Grav., 2:343, 1985

Vacuum properties

G _{gauge}	Λ_{cosm}	m ² [multiplicity]
SO(3, 5)	$2 \times 3^{1/4}$	$0 \ [15], 8 \cdot 3^{1/4} \ [5], 4 \cdot 3^{1/4} \ [30],$
		$8 \cdot 3^{-3/4}$ [14], $-4 \cdot 3^{-3/4}$ [5], $-4 \cdot 3^{1/4}$ [1]
SO(4, 4)	2	0 [16], 2 [16], 4[36], -4 [2]
CSO(2, 0, 6)	0	0 [48],1/2 [20],2 [2]

SO(3,5) and SO(4,4) (de Sitter)

- unstable
- |V"|/V ≈ 1
 ⇒ slow roll inflation
- flat directions \rightarrow Goldstone bosons $SO(p, q) \rightarrow SO(p) \times SO(q)$

previous results: Kallosh, Linde, Prokushkin, Shmakova, Phys. Rev., D65:105016, 2002.

Vacuum properties

G _{gauge}	Λ_{cosm}	m ² [multiplicity]
SO(3, 5)	$2 imes 3^{1/4}$	$0 \ [15], 8 \cdot 3^{1/4} \ [5], 4 \cdot 3^{1/4} \ [30],$
		$8\cdot 3^{-3/4}$ [14], $-4\cdot 3^{-3/4}$ [5], $-4\cdot 3^{1/4}$ [1]
SO(4, 4)	2	0 [16], 2 [16], 4[36], -4 [2]
CSO(2, 0, 6)	0	0 [48],1/2 [20],2 [2]

CSO(2, 0, 6) (Minkowski)

- stable ($\mathcal{N} = 2$)
- 12 Goldstone bosons $CSO(2, 0, 6) \rightarrow SO(2) \times SO(6)$
- other 36 flat directions $T \in GL(6)$ $\theta \rightarrow (\det T)^{-1}\theta$

previous results: Kallosh, Linde, Prokushkin, Shmakova, Phys. Rev., D65:105016, 2002.

Conclusions

- We reproduced known vacua of gauged $\mathcal{N} = 8$ supergravity $G_{gauge} = (C)SO(p, q, r).$
- We provided the whole mass spectra for the first time
 - de Sitter vacua are unstable, no slow roll
 - the Minkowski vacuum is stable
- We can reproduce vacuum solutions for $\phi \neq 0$ just by modifying the gauge group embedding

•
$$\theta \to \widetilde{\theta} = U^{-1}\theta$$
, $U \in ISO(\mathcal{M}_{\phi})$

- The general method holds $\forall \ \textit{G}_{gauge}, \ \mathcal{N} \neq 8$
 - instead of θ : Θ_M^{α} , embedding tensor
 - generic vacuum conditions
 - classification of the vacua