Aspects of flux compactifications in string theory

Peter Patalong

Department für Mathematische Physik und Stringtheorie Ludwig-Maximilians-Universität München

July 19th, 2010

String theory String theory is a quantum theory of gravity.

Quantisation of a vibrating string. Features:

- Infinite set of different particle states
- In particular: graviton states
- Extra dimensions
- Supersymmetry

Flux compactifications

Compactification is compulsory.

- Compactifications without flux:
 - $\blacktriangleright \ \mathcal{M}_{1,9} = \mathcal{M}_{1,3} \times \mathcal{M}_{6}$
 - Typically: \mathcal{M}_6 is a Calabi-Yau
 - But: too much supersymmetry and a set of massless fields (moduli)
- Flux compactifications:
 - Warped geometries
 - Moduli stabilisation
 - Supersymmetry breaking

Supergravity

Investigations of flux compactifications are conveniently pursued in the context of supergravity.

- Theory of supersymmetric general relativity
- But also: low energy effective theory of string theory
- Graviton, Dilaton, B-field, R-R fields
- Maximal supersymmetry in d = 10: types IIA and IIB

Supersymmetric supergravity backgrounds

The main task is to solve the supersymmetry equations.

- Supergravity background = solution to the field equations
- Investigate $\mathcal{M}_{1,9} = \mathbb{R}^{1,5} \times_{\omega} \mathcal{M}_4$:
 - Complete solutions available
 - Discover general features by contrasting with usual 4 + 6 split
- Strategy:
 - ► Supersymmetry equations + Bianchi identities ⇒ equations of motion
 - Fermionic fields = 0
 - $\delta(\text{gravitino}) = 0$ and $\delta(\text{dilatino}) = 0$

Supersymmetry equations

A beauty in its own

$$0 = \delta_{\varepsilon} \Psi_{\mu} = \left(\nabla_{\mu} + \frac{1}{8} \mathcal{P} \mathcal{H}_{\mu} \right) \varepsilon + \frac{1}{16} e^{\Phi} \sum_{n} \frac{1}{(2n)!} \mathcal{F}^{(2n)} \Gamma_{\mu} \mathcal{P}_{n} \varepsilon$$
$$0 = \delta_{\varepsilon} \lambda = \left(\partial \!\!\!/ \Phi + \frac{1}{12} \mathcal{H} \!\!\!/ \mathcal{P} \right) \varepsilon + \frac{1}{8} e^{\Phi} \sum_{n} (-1)^{2n} \frac{5 - 2n}{(2n)!} \mathcal{F}^{(2n)} \mathcal{P}_{n} \varepsilon,$$

Solving

Everything has to be decomposed to the tiniest bits and pieces.

• Spinor ansatz with $\mathcal{N} = (1,0)$ supersymmetry

$$\begin{split} \varepsilon_1 &= \mathsf{a}\zeta \otimes \eta + \mathsf{a}\zeta_{\mathsf{c}} \otimes \eta_{\mathsf{c}} \\ \varepsilon_2 &= \mathsf{b}\zeta \otimes \eta + \mathsf{c}\zeta \otimes \eta_{\mathsf{c}} + \mathsf{b}\zeta_{\mathsf{c}} \otimes \eta_{\mathsf{c}} - \mathsf{c}^*\zeta_{\mathsf{c}} \otimes \eta \end{split}$$

Fluxes decomposed as

$$e^{\Phi} \not \! F = 2f_m^{(1)} \Gamma^m + \frac{1}{3} f_q^{(3)} \varepsilon_{mnpq} \Gamma^{mnp}$$
$$\not \! H = \frac{1}{3!} \varepsilon_{mnpq} \Gamma^{mnp} h_q$$

in the type IIB case

Solutions

Few degrees of freedom remain.

Geometry determined by the fluxes

- Torsion classes
- Warp factor
- Constraints on the fluxes

Generalised geometry

Differential geometry on $\mathcal{TM}\oplus\mathcal{T}^*\mathcal{M}$

Powerful mathematical description:

```
Spinors of T\mathcal{M} \oplus T^*\mathcal{M}

\uparrow

Polyform of T^*\mathcal{M}

\uparrow

Bispinor of S(\mathcal{M})
```

- Providing convenient formulations of
 - Supersymmetry equations
 - Effective actions including branes

Pure spinor equations

A completely equivalent formulation

Pure spinor equations

$$d_{H}\left(e^{4A-\Phi}\Psi_{1}\right) = 0$$
$$d_{H}\left(e^{6A-\Phi}\operatorname{Re}\Psi_{2}\right) = -\frac{1}{4}*\sigma(F)e^{6A}$$
$$d_{H}\left(e^{4A-\Phi}\operatorname{Im}\Psi_{2}\right) = 0$$

Additional constraint

$$2\mathsf{d} A \wedge \mathsf{Re} \Psi_2 = -rac{1}{8} e^{\Phi} * \sigma(F)$$

Outlook

Learning from the toy model

- ► Find manifolds M₄ in the set of group manifolds (e.g. solveand nilmanifolds)
- Investigate also AdS solutions or even dS solutions including orientifolds
- Find a low energy effective action for the six-dimensional field theory
- Investigate the landscape (i.e. the effective potential)