X-ray FELs: State of the Art and Opportunities For Advanced Accelerators

Agostino Marinelli SLAC National Accelerator Laboratory

Outline

Intro on FEL physics

FEL R&D

- Attosecond pulses
- Seeded FELs

Opportunities for advanced accelerators

DISCLAIMER: A lot of work being done, can't possibly include everything... I will focus on experimental progress. I am not immune to bias...

Why X-Rays?

The X-Ray Free-Electron Laser

X-FEL shares properties of conventional lasers:

-High Power (up to 100s GW)
-Short Pulse (0.2-100 fs)
-Narrow Bandwidth (~0.1% to 0.005%)
-Transverse Coherence

Working Principle

Ingredients: Relativistic electrons (~ few GeV) Magnetic undulator

SLAC

Source: https://www.helmholtz-berlin.de

Working Principle

FEL Physics in a Nutshell

Basic XFEL Operation

SLAC

W. Decking et. al. *Nature photonics* 14.6 (2020): 391-397.

Temporal resolution ~ tens of femtoseconds

E. Prat et al. Nature Photonics 14.12 (2020): 748-754

SASE FEL: partial temporal coherence

D. Zhu et al. Applied Physics Letters 101.3 (2012): 034103.

N. Hartmann et al. Nature Photonics 12.4 (2018): 215-220.

Status of FEL R&D

Attosecond Science

Time Resolution with X-ray FELs

Time Resolution with X-ray FELs

SLAC

of fs without time-sorting

See e.g.: Kang, Heung-Sik, et al Nature Photonics 11.11 (2017): 708-713.

Time Resolution with X-ray FELs

Glownia et al. <i>Opt.</i> <i>express</i> 18.17 (2010): 17620-17630	Harmand et al. Nat. Photon. 7.3 (2013): 215-218	Lutman., et al. <i>PRL</i> 110.13 (2013): 134801.	Duris, Li et al. <i>Nat. Photon.</i> 14.1 (2020): 30-36.
	Hartmann et al. <i>Nat. Photon.</i> 8.9 (2014): 706-709	Marinelli et al. <i>PRL</i> 111.13 (2013): 134801.	Huang, S., et al <i>PRL</i> 119.15 (2017): 154801.
		Hara, Toru, et al. " <i>Nat. Comr</i> 4.1 (2013): 1-5.	m ^{Malyzhenkov, et al. PRR 2.4 (2020): 042018}
		Marinelli et al. <i>Nat. Comm.</i> 6 (2015): 6369.	Maroju, et al. <i>Nature</i> 578.7795 (2020): 386-391.
		Lutman et al. <i>Nat. Photon.</i> 10.11 (2016): 745.	
		Ferrari, Eugenio, et al. <i>Nat. Comm.</i> 7.1 (2016): 1-8.	

J. MacArthur., et al. *Physical review letters* 123.21 (2019): 214801 Zhang, Zhen, et al. *New Journal of Physics* 22.8 (2020): 083030.

t (as)

Scientific Impact

J. Duris, S. Li et al. Nature Photonics 14.1 (2020): 30-36.

Scientific Impact

J. Duris, S. Li et al. Nature Photonics 14.1 (2020): 30-36.

Science with Attosecond FELs

Simulation: M. Grell (UAM)

LCLS Attosecond Campaign: First attosecond pump/attosecond probe experiment (unpublished)

SLAC

Other highlights:

Mapping coherent electron motion in Auger decay (Siqi Li et al. Science Vol 375, Issue 6578 • pp. 285-290) Impulsive stimulated X-ray Raman (J. O'Neal *Physical review letters* 125.7 (2020): 073203)

Attosecond Science with Seeded FELs

Prince, K. C., et al. Nature Photonics 10.3 (2016): 176-179

Maroju et al. *Nature* 578.7795 (2020): 386-391

SEEDED FELS

Temporal Coherence of SASE (or lack thereof...)

Solutions

SLAC

Seeding: Establish phase coherence by triggering instability with a coherent pulse.

Self-Seeding

Harmonic Generation

Slippage boosting: Establish phase coherence by enhancing slippage.

Undulator module

Undulator module

Chicane

Schneidmiller, E. A., and M. V. Yurkov. "Harmonic lasing in x-ray free electron lasers." *Physical Review Special Topics-Accelerators and Beams* 15.8 (2012): 080702.

Chicane

Wu, Juhao, et al. "X-ray spectra and peak power control with iSASE." (IPAC 2013): WEODB101.

McNeil, B. W. J., N. R. Thompson, and D. J. Dunning. "Transform-limited X-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser." *Physical review letters* 110.13 (2013): 134802.

Xiang, Dao, et al. "Purified self-amplified spontaneous emission freeelectron lasers with slippage-boosted filtering." *Physical Review Special Topics-Accelerators and Beams* 16.1 (2013): 010703.

Schneidmiller, E. A., et al. "First operation of a harmonic lasing selfseeded free electron laser." *Physical Review Accelerators and Beams* 20.2 (2017): 020705.

Solutions

SLAC

Seeding: Establish phase coherence by triggering instability with a coherent pulse.

Self-Seeding

Harmonic Generation

Slippage boosting: Establish phase coherence by enhancing slippage.

Undulator module

Undulator module

Chicane

Schneidmiller, E. A., and M. V. Yurkov. "Harmonic lasing in x-ray free electron lasers." *Physical Review Special Topics-Accelerators and Beams* 15.8 (2012): 080702.

Chicane

Wu, Juhao, et al. "X-ray spectra and peak power control with iSASE." (IPAC 2013): WEODB101.

McNeil, B. W. J., N. R. Thompson, and D. J. Dunning. "Transform-limited X-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser." *Physical review letters* 110.13 (2013): 134802.

Xiang, Dao, et al. "Purified self-amplified spontaneous emission freeelectron lasers with slippage-boosted filtering." *Physical Review Special Topics-Accelerators and Beams* 16.1 (2013): 010703.

Schneidmiller, E. A., et al. "First operation of a harmonic lasing selfseeded free electron laser." *Physical Review Accelerators and Beams* 20.2 (2017): 020705.

External Seeding

Yu, L-H., et al. Science 289.5481 (2000): 932-934.
 Lambert, G., et al. Nature physics 4.4 (2008): 296
 Stupakov, Gennady PRL 102.7 (2009): 074801.
 Xiang, D., et al. PRL 105.11 (2010): 114801
 Allaria, E., et al. Nature Photonics 6.10 (2012): 699.
 Allaria, E., et al. Nature Photonics 7.11 (2013): 913.

- 7) Zhao, Z. T., et al. *Nature Photonics* 6.6 (2012): 360.
- 8) Hemsing, E., et al. *Nature Photonics* 10.8 (2016): 512.
- 9) Ribič, Primož Rebernik, et al. Nature Photonics (2019): 1.

Self-Seeding

- 1) Feldhaus, J., et al Optics Communications 140.4-6 (1997): 341-352.
- 2) Geloni, Gianluca, Vitali Kocharyan, and Evgeni Saldin. Journal of Modern Optics 58.16 (2011): 1391-1403
- 3) Amann, J., et al. Nature photonics 6.10 (2012): 693.
- 4) Ratner, Daniel, et al. Physical review letters 114.5 (2015): 054801.
- 5) Inoue, Ichiro, et al. Nature Photonics 13.5 (2019): 319.

The Brightness Frontier: Cavity-Based XFELs

Courtesy G. Marcus, D. Zhu et al.

Back to Madey's FEL!

Ongoing R&D at LCLS and EUXFEL

LCLS: test in FY23-24 (2-bunch mode) Recent highlight: cold-cavity test

SLAC

Kwang-Je Kim, Yuri Shvyd'ko, and Sven Reiche Phys. Rev. Lett. **100**, 244802 (2008)

Zhirong Huang and Ronald D. Ruth Phys. Rev. Lett. **96**, 144801 (2006)

Marcus, Gabriel, et al. *Physical Review Letters* 125.25 (2020): 254801

Opportunities for Advanced Accelerators

Plasma-Based FELs: Two Worlds

Laser-based plasma accelerators

A. Maier et al. Phys. Rev. X 10, 031039 (2020)

Potentially compact

MANY FELs with lower performance than big machines.

Good opportunity for complementing existing facilities

Beam-based plasma wakefield

Litos, M., et al. Nature 515.7525 (2014): 92-95

Not exactly compact...

Opportunities arise from doing better than conventional FELs:

-beam "multiplexing"-ultrahigh brightness injectors-attosecond science

SLAC

Wang, Wentao, et al. Nature 595.7868 (2021): 516-520

Groundbreaking observation of lasing More results coming from SPARC!

Still far from usable tool

Effort in stable operation of plasma accelerators shows great promise...

A. Maier et al. Phys. Rev. X **10**, 031039 (2020) Sören Jalas et al <u>Phys. Rev. Lett. 126, 104801</u> (2021)

Does It Have to be as Good as LCLS (or other XFELs)?

SLAC

~25% HXR beamtimes use multiplexing mode -> ~1% of pulse energy

Even LCLS doesn't have to be as good as LCLS in many cases!!

Zhu, Diling, et al. "Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source." *Review of Scientific Instruments* 85.6 (2014): 063106.

What gets me excited: Opportunities in Attosecond Science

B. Hidding, G. Pretzler, J. B. Rosenzweig, T. Königstein, D. Schiller, and D. L. Bruhwiler Phys. Rev. Lett. **108**, 035001

X. Xu et al. Physical Review Accelerators and Beams 20.11 (2017): 111303.

Does it Have to be a High-Gain FEL?

Tolerates what is bad about plasma accelerators (e.g. pointing stability) Uses features that are unique to plasma accelerators (large chirp, high brightness)

WE DON'T HAVE TO REPLICATE CONVENTIONAL FELS! THIS IS A NEW TOOL, LET'S DEVELOP NEW APPLICATIONS

X-ray FELs have become the most prominent tool for ultrafast science

X-ray FEL R&D continues pushing the envelope of FEL science:

- attosecond pump/probe experiments
- coherent control and narrow bandwidth
- cavity-based X-ray FEL

Plasma-based sources present many challenges but also unique opportunities

- plasma-injectors
- attosecond science

LET'S THINK OUTSIDE THE BOX

Smaller XFELs are interesting but new technology should create new opportunities

The physics of x-ray free-electron lasers C. Pellegrini, A. Marinelli, and S. Reiche Rev. Mod. Phys. **88**, 015006 - 9 March 2016

Questions?

Synchrotron Radiation and

Kwang-Je Kim, Zhirong Huang,

asers

and Ryan Lindberg

Free-Electron

es of Coherent X-Ray Generation

