
Theoretical Basis and Exascale Simulations
for plasma wakefield acceleration

Maxence Thévenet – DESY

MPA1 team: theory and
simulations for plasma acceleration

I. Physics of plasma acceleration

II. The particle-in-cell (PIC) method

III. High-performance computing

IV. Recent activities at DESY

I. Physics of plasma acceleration

II. The particle-in-cell (PIC) method

III. High-performance computing

IV. Recent activities at DESY

Page 3

Particle accelerators are large devices

• Kinetic energy: ℰ! ∝ 𝐿 × 𝐸"

• Conventional accelerators limited to 𝐸" < 100 MV/m

• Applications from MeV to TeV energy ranges

• Plasma acceleration 𝐸" > 10 GV/m à 100x more compact

Page 4

Plasma acceleration: an alternative to conventional technologies

T. Tajima, J. M. Dawson. PRL 43.4 (1979)Wake ~ λ# = 10s − 100s µm
Propagation ~ mm-m distance

Plasma
• electrons and ions (q/m >1000x larger)
• Sensitive to electromagnetic fields à collective effects

• Electron plasma waves: 𝜔$ =
%!&"

'!(#
, 𝑘$ =

)$
* , 𝜆$ =

+,
!$

-

+

-

+

- +
-

+

-

+

-+

-

+

-
+

-

+

-

+-+

𝑑𝒑
𝑑𝑡

= −𝑒 𝑬 + 𝒗×𝑩 For the beam: 𝒗𝒛~ 𝑐

Page 5

The wake can be driven by a particle beam or a laser pulse

Laser pulse

• Length 𝐿 < 𝜆$, width 𝑤. < 𝜆$, wavelength 𝜆 = 0.8 µm
• 𝑎. =

&/#
'!)*

; non-relativistic 𝑎. ≪ 1

• Ponderomotive force: 𝑭𝒑 = − 1
+'!2𝜸

𝜵|𝑞𝐴4+|

Electron beam

• 𝐿 < 𝜆$
• 𝒗 ~ 𝑐𝒆𝒛
• 𝜌, 𝑱à 𝑬,𝑩
• Fields depend on the beam current

Laser pulse Electron beam

Page 6

Wakefield acceleration is a complex dynamic process
Evolving driver

Evolving witness

Evolving wake

Page 7

Wake excitation 1/2: linear regime

• Small perturbation of electron density
• Co-moving coordinate f 𝑧, 𝑡 à f 𝜁 = 𝑧 − 𝑐𝑡, 𝑡
• Quasi-static approximation: Neglect some time derivatives
• Electrons behaves as a laminar fluid à cold fluid theory

Condition for (quasi-)linear regime
Laser for 𝑘$𝐿~1 & 𝑘$𝑤. ≤ 1, 𝒂𝟎 < 𝟏
Beam for 𝑘$𝐿~1 & 𝑘$𝑅 ≤ 1, 𝒏𝒃

𝒏𝒆
< 𝟏

L.M. Gorbunov and V.I. Kirsanov, Sov. Phys. JETP 66 (1987)

• Convenient variable: pseudo-potential
𝜓 = 𝜙 − 𝑎"
𝑭 = 𝑚&𝑐+ −𝜕7𝜓𝒆𝒛 + 𝜵8𝜓 for an electron with 𝒗 ~ 𝑐𝒆𝒛

𝜓 = 9!$
+ ∫7

:; |𝒂𝒍𝟐(𝒖)| sin 𝑘$(𝜁 − 𝑢) 𝑑𝑢

à Resonant excitation 𝑘$𝐿 ~ 1
à Harmonic waves, ¼ plasma wavelength focusing/accelerating

Page 8

Wake excitation 2/2: blowout regime

• Fluid description is not accurate

• Cold non-relativistic wave-breaking field [1] 𝐸. =
'!)$*

&

• In the ion cavity

• 𝐸> − 𝑐𝐵? =
/#!$>
+ [2] Linear and independent on z

• 𝐸" independent on r

• Semi-analytic models [3,4] for 𝐸"

à Excellent properties for accelerating a beam

[1] J. M. Dawson Phys. Rev. 113 (1959)
[2] J. B. Rosenzweig et al., PRA 44 (1991)
[3] A. Pukhov et al., PPCF 64 (2004)
[4] W. Lu et al., PRL 96 (2006)

Condition for the blowout regime
Laser for 𝑘$𝐿~1 & 𝑘$𝑤. ≤ 𝑎., 𝒂𝟎 ≫ 𝟏
Beam for 𝑘$𝐿~1 & 𝑘$𝑅 ≤ 1, 𝒏𝒃

𝒏𝒆
≫ 𝟏

Page 9

Laser pulses and particle beams are affected by the plasma
Laser driver

In vacuum
• 𝑣@~𝑐, 𝑣A~𝑐

• Diffraction over the Rayleigh length 𝑧B =
,C#"

D

In a plasma: refractive index 𝜂> = 1 −)$"

+E)"

• 𝑣CF!& = 𝑣A = 1 −)$"

+)" 𝑐 < 𝑐 à dephasing
• Relativistic self-focusing

Driver and witness particle beams

• Decelerating driver & accelerating witness à Transformer ratio
• Betatron oscillations 𝜔G =

)$
+E

• Trapping of a witness beam T ratio = 1.2

CHAPTER 2. NUMERICAL TOOLS

quiver velocity and amplitude in the polarization direction

—quiv =
Û

1 ≠ —z0
2 “0 (2.67)

kxquiv = a0“0(1 + —z0). (2.68)

2.2.2 Gaussian pulse and paraxial approximation

To study the electron dynamics in a realistic laser pulse, the plane wave approximation
is no longer satisfactory and one should describe the more realistic fields in a laser beam.
The pulse properties are established in the laser cavity, see reference [Siegman, 1986].
Putting aside considerations about the pulse finite duration, the study usually relies on
two approximations: (i) the scalar approximation states that the electric and magnetic
fields can be described by a single scalar quantity U ; for example, in the plane wave
described above, E = Uex and B = U/cey. (ii) the paraxial approximation when
the laser cavity is much longer than any transverse dimension. Assuming the long
direction is z and U = Â(x, y, z)eikz, this approximation reads |@2

Â/@z
2
| π k|@Â/@z|.

Equivalently, the angle between the k vector and the z axis is small in the cavity.
The spatial profile of the laser beam can be decomposed in cylindrical modes. The

lowest-order, and consequently the most stable and more common one, is the Gaussian
mode, which reads

U(x, y, z) = e
ikz

1 + iz/zR

exp
C

≠
r

2
/w

2
0

1 + iz/zR

D

(2.69)

= w0
w(z) exp

C

≠
r

2

w2(z)

D

exp
C

ikz + ik
r

2

2R(z) ≠ i atan
3

z

zR

4D

(2.70)

with the radial coordinate r
2 = x

2 + z
2, the Rayleigh length zR = kw

2
0/2, the beam

width w(z) = w0
Ò

1 + z2/z
2
R

and the radius of curvature R(z) = z + z
2
R

/z. w0 is the
beam waist, i.e. the beam size at focus z = 0. Figure 2.9 shows the intensity profile of
a Gaussian mode.

−150 −100 −50 0 50 100 150

−60

−40

−20

0

20

40

60 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w0

zR

Figure 2.9: squared amplitude of the electric field for a monochromatic Gaussian mode with
beam waist kw0 = 10.

The maximum angle – of the k vector in the beam reached for r = w(z), and is
given by

tan – = w(z)
R(z) æ

2
kw0

when z æ Œ. (2.71)

The paraxial approximation holds as long as – π fi, i.e. kw0 ∫ 1.

69

Chen, PRL (1986)

Numerous effect are hard to
evaluate analytically

à Quantitative predictions require
numerical simulations

I. Physics of plasma acceleration

II. The particle-in-cell (PIC) method

III. High-performance computing

IV. Recent activities at DESY

Page 11

Particle-in-Cell: self-consistent plasma & fields description

Plasma electrons are disturbed by the driver, and form a wake with
large electric fields where a particle beam can be accelerated

Regular mesh
Macroparticles

Push particles
𝑥, 𝑣 = 𝑓(𝐸, 𝐵)

Deposit currents
𝐽 = 𝑓(𝑥, 𝑣)

Solve fields
𝐸, 𝐵 = 𝑓(𝐽)

Gather fields
𝐸, 𝐵 = 𝑓(𝐸, 𝐵)

Lagrangian description of plasma
Eulerian description of fields

à 3D simulations of plasma acceleration
are very expensive

Page 12

Several methods & approximations are well-suited to PIC

Plasma electrons are disturbed by the driver, and form a wake with
large electric fields where a particle beam can be accelerated

Ø Reduced geometry: Azimuthal decomposition or RZ

• CALDER-circ, OSIRIS, QPAD, FBPIC, WarpX

à Quasi-cylindrical problems

Lifschitz, A. F., et al. JCP 228.5 (2009)

https://fbpic.github.io/overview/pic_algorithm.html
#cylindrical-grid-with-azimuthal-decomposition

Page 13

Several methods & approximations are well-suited to PIC

1 m (10,000x)

100 microns

Ø Reduced model: quasi-static PIC (QS-PIC)

• Beam & wake: 𝒗 ~ 𝑐𝒆𝒛
• Quasi-static approximation
• From the driver at a given time, calculate the

plasma response à no history

à No CFL condition, large time step for the beam
à Cannot capture injection

Lorentz
Transform

Ø Boosted frame method

• Reduces number of time step by orders of magnitude
• Prone to Numerical Cherenkov Instability (NCI)
• Methods exist to mitigate NCI (PSATD + Galilean transform

[1,2], RIP [3])

J.-L. Vay PRL 98, 130405 (2007)

[1] R. Lehe et al., PRE 94 (2016)
[2] M. Kirchen et al., Phys. Plasmas 23 (2016)
[3] A. Pukhov JCP 418 (2020)

Problem: the CFL condition limits the time step to ∆𝑡 < 𝑐∆𝑧

Page 14

3D QS-PIC simulations rely on 2D PIC loop in 𝜁 from head to tail

Plasma electrons are disturbed by the driver, and form a wake with
large electric fields where a particle beam can be accelerated

Gather fields
Ex

Push particles
Ex

Deposit densities
rho

Solve fields
Ex

x

y

z

z

y

x
⊙

From slice iz to iz-1

Ø Only 1 slice of fields and plasma particles
Ø Head-to-tail swipe to calculate fields on each slice (𝑁")
Ø For each slice, 2D PIC iterations (in z) with Poisson solves
Ø Can be parallelized transversally and longitudinally

head-to tail swipe Beam push by ∆𝑡

∆𝑧

~c

Page 15

Comparison EM-PIC & QS-PIC

EM-PIC QS-PIC

Algorithm Fields and particles advanced in time
𝜕H𝑓 = ⋯

Beam particles advanced in time
Plasma particles advanced in space 𝜁
Fields: 2D Poisson equation ∆8𝑓 = 𝑠

Data 𝑛4𝑛I𝑛"(10 + 𝑝𝑝𝑐 ∗ 10) 𝑛4𝑛I (10 + 𝑝𝑝𝑐 ∗ 10)

Operations 𝒏𝒕 PIC iterations 𝒏𝒙𝒏𝒚𝒏𝒛 𝒏𝒕𝒏𝒛 PIC iterations 𝒏𝒙𝒏𝒚
Existing codes CALDER, EPOCH, FBPIC, OSIRIS,

PIConGPU, Smilei, Vsim, WarpX, …
HiPACE++, INF&RNO, LCODE, QuickPIC,

QPAD, WAND-PIC, …

Advantages and
limitations

General but expensive Large time step but injection not always
captured

• Languages (Python, C++, C, Fortran, etc.)
• Capabilities (boosted frame) & methods
• Physics (collisions, ionization, QED)
• Geometries (1/2/3D, quasi-cylindrical)
• Open-source, supported platforms

I. Physics of plasma acceleration

II. The particle-in-cell (PIC) method

III. High-performance computing (HPC)

IV. Recent activities at DESY

Page 17

Supercomputers accelerate parallel applications

…

Interconnect

Parallel file system

Compute nodes

Domain
decomposition

Data must be exchanged at each iteration
• Fields: 1 (or more) boundary “ghost” cells
• Particles: changing sub-domain
à Halo exchange

Strong scaling (total problem size = cst)
Weak scaling (problem size per node = cst)

In practice for PIC

3DUDOOHO &RPSXWLQJ ��� ������ ������

�

A. Myers et al.

counting sort operation that can be used to perform both of these
operations. Internally, it is built using a GPU implementation of parallel
prefix sum, which is based on Ref. [25] and works on NVIDIA, AMD,
and Intel GPUs.

In addition to the presented cache-utilization optimization, sorting
and/or binning particles is needed for the modeling of particle–particle
interactions. The PIC method by default only models particle–mesh
interaction and mesh updates. WarpX implements binary collisions,
which depend on a prior binning of neighboring particles, to address
various applications in accelerator and beam physics.

Fig. 1 shows the results of a parameter study in which the bin
size and sorting interval were varied. For example, a bin size of 2x2x2
and sorting interval of 4 means that particles were sorted into 2x2x2
supercells every 4 timesteps. On this problem, the optimal sorting is to
sort by cell (i.e. a bin size of 1x1x1 every time step, and the difference
between sorting optimally and not sorting at all is a factor of ˘7.5,
with most of the improvement comings from the current deposition
and fused gather and push kernels. However, the very frequent sorting
interval for this problem is a special, because the particles in this
problem change cell more often than in most WarpX applications.
Currently, the default in WarpX, used throughout Section 4, is to sort
the particles by their PIC cell every 4 time steps.

Note that, although the Redistribute() function in AMReX
does not maintain this cell-sorted order for particles that left one grid
and been migrated to another, this only applies to particles that have
changed grids — typically only a small subset of the total that are near
the ‘‘surface’’. The bulk of the particles on a grid will maintain their
sorted order in between Redistribute() calls.

Figs. 2 and 3 show the results of a roofline analysis [26] on the
current deposition and fused gather and push kernels in WarpX, which
are the two most computationally expensive operations. Our analysis
followed the methodology of [27]. For this test, we used a uniform
plasma setup with 8 particles per cell and gave the particles a large
thermal velocity, so that they frequently change cells. To rule out any
transient effects, we ran the problem for a total of 100 steps and only
profiled the last one.

The roofline analysis reveals three things. First, as already demon-
strated, sorting the particles gives significantly better performance on
V100 GPUs than not sorting them. Second, the fact that the arithmetic
intensity measured using the memory bandwidth for the L1 and L2
caches is significantly lower than for HBM indicates that, in the sorted
run, we are getting significant reuse in both of these levels of cache.
Third, the arithmetic intensity for the current deposition for the sorted
run is right up against the streaming limit for the L2 cache. This
indicates that the performance of this kernel is now limited by the L2
cache bandwidth. Gather and push, on the other hand, is likely still
limited by HBM bandwidth. Taken together, these results suggest that
these kernels should get significantly better performance on the A100,
which has a larger L2 cache and higher HBM bandwidth than the V100.

Finally, we note that some PIC codes, such as PIConGPU [15],
achieve a similar effect by explicitly using shared memory to cache the
electric and magnetic fields for nearby particles during field gathering,
and by using it as a write buffer when performing current deposition.
We have experimented with this approach and have thus far not seen
an advantage to doing so. However, work on this front is ongoing. We
note that our approach achieves a similar caching effect by implicitly
relying on L2 rather than explicitly managing the contents of shared
memory buffers.

4. Performance results

In this section, we give current performance results on Summit for
two key benchmark problems. We concentrate on two areas — the
scaling of the code on a uniform plasma test case and the performance
on a plasma accelerator benchmark problem.

Fig. 4. Results of a weak scaling study on a uniform plasma setup on Summit. The
x-axis shows the number of Summit nodes, while the y-axis is the number of particles
advances per nanosecond. Both the CPU and GPU versions of the code scale well, and
the overall speedup associated with using the accelerators is Ì30.

4.1. Uniform plasma scaling

4.1.1. Weak scaling study
In order to test the scaling of WarpX in an idealized setting, as well

as to gauge the speedup associated with using accelerated nodes, we
have performed a weak scaling study using a uniform plasma setup
on OLCF’s Summit supercomputer. The base case for this scaling study
used a 256 x 256 x 384 domain with a box size of 1283 and ran
on 1 Summit node; thus, on the GPU-accelerated runs, each GPU was
responsible for processing two 1283-sized boxes. Particles were initially
distributed uniformly with 8 particles per cell. We used the standard
Yee FDTD solver for these runs, with Esirkepov current deposition and
third order shape functions. For the weak-scaling study, the number of
Summit nodes were doubled with the number of cells (and particles
therein) in the x-, y-, or z-directions, while holding everything else
constant, maintaining a constant workload per node. We continued
this process up to 2048 nodes — about half of the Summit machine.
Overhead associated with time spent in problem initialization, memory
allocation, etc., was minimized by running for a total of 100 steps.

The results are shown in Fig. 4. We performed the above scaling
study twice, once using all six GPUs per Summit node, and again
using only the POWER9 CPUs. All CPU and GPU results presented in
this section used versions of WarpX1 and AMReX2 from 10/2020, in
which all the optimizations discussed in Section 3 were present. For
both runs, we used 6 MPI tasks per node. For the GPU-accelerated
runs, we used one GPU per MPI task, and for the CPU-only case, we
used 7 OpenMP threads per task, so that all 42 physical cores on the
node were active. Note that, while the POWER9 CPUs on Summit are
capable of simultaneous multi-threading (SMT) - running more than 1
hardware thread per physical core — we do not typically see a large
benefit to using this feature with WarpX. To confirm this trend for
this problem setup, we have taken the 1 node version of the problem
above and also run it using 2 (SMT2) and 4 (SMT4) hardware threads
per physical core. The SMT2 run was approximately 2.4% faster than
without using SMT, while the SMT4 run was 13.9% slower. Thus,
while there is a small benefit to using SMT on this problem, using it

1 WarpX Version: 20.10-58-g7a3d26f1cc8d.
2 AMReX Version: 20.10-47-gf29a0c9d1b8e.

3DUDOOHO &RPSXWLQJ ��� ������ ������

�

A. Myers et al.

would not significantly alter our conclusions here. Likewise, we have
experimented with different combinations of MPI ranks per node and
OpenMP threads per rank other than 6–7 split shown in Fig. 4. Using
one MPI rank per socket rather than 3 and 21 OpenMP threads per
rank gives the same timings to within 0.2%, while other combinations,
such as 1 MPI and 42 OpenMP threads per node, were slower by a few
percentage points.

Using these results, we can characterize both the weak scaling
behavior of the CPU and GPU versions of the WarpX, as well as see
the overall speedup obtained on Summit from using the accelerators.
In both cases, the code scales well up to 2048 nodes. The weak scaling
efficiency, defined as the total time taken for 100 time steps on 1 node
divided by the total taken on 2048 nodes, is 81% for the GPU case
and 90% for the CPU case. The difference in scaling efficiency between
the CPU and GPU can be attributed to the fact that, because the
local work is significantly faster when using the V100s, communication
operations like FillBoundary, which are inherently harder to scale,
become relatively more expensive. Additionally, the speedup from the
accelerators at all scales tested was a factor of 30. This speedup
refers to the total run time, including time associated with host/device
memory traffic and communication, not to isolated compute kernels.

4.1.2. Strong scaling study
We have also conducted a series of strong scaling tests, using a very

similar uniform plasma problem setup as before. The only difference is
that the box size has been set to 643, to allow for more GPUs/MPI tasks
to be used as the problem is strong scaled. There is some overhead
associated with doing this, since with smaller boxes, the surface to
volume ratio of ghost cells is higher. Other than the box size, the
parameters are all the same as before.

We use a series of problem sizes, each scaled up a factor of 2 in
terms of the number of cells and particles in the domain. For each one,
we conduct a series of five runs, increasing the number of MPI tasks by
a factor of 2 each time. Thus, in the fifth run, the run time should have
decreased by a factor of 16, assuming perfect strong scaling. By the
time we have multiplied the number of MPI ranks by 16, this problem
has reached the point where the compute work and the communication
work take approximately the same amount of time, so we would not
expect the problem to scale further than that.

The smallest scaling study in this series goes from 1 to 16 nodes,
while the largest goes from 256 to 4096, nearly the entire machine.
The scaling efficiency, defined as the time a run should take assuming
perfect strong scaling within a problem size and perfect weak scaling
from the base problem size divided by the actual run time, is plotted
in Fig. 5. The efficiencies after strong scaling by a factor of 16 for each
problem size vary from approximately 70% for the smallest case to
approximately 50% for the largest.

4.2. Plasma acceleration stage

The above tests were highly idealized in several ways. First, the
workload was perfectly uniform at initial time, and approximately
uniform at later times, subject only to random fluctuations in the
particle density from cell to cell. Second, the number of particles
per cell, 8, is significantly higher than used in some WarpX physics
applications. Laser-wakefield acceleration runs, for example, tend to
use about 2 particles per cell on average, which can change the per-
formance profile of the code. Evaluating WarpX on this important
science scenario, the following setup was used, designed to mimic the
essential features of modeling a single plasma-accelerator stage from
WarpX’s challenge problem. This is also the benchmark problem used
to determine a Figure-of-Merit (FOM) for the ECP Key-Performance
Parameters (KPP) assessment. As a KPP-1 project, WarpX needs to
show at least a factor of 50 increase in its FOM over the baseline on
the eventual Exascale hardware. In this setup, an accelerated particle
beam is tracked using the moving window feature in WarpX, in which

Fig. 5. Strong scaling studies for a variety of problem sizes. Each tick type refers to a
different problem size. The x-axis shows the number of Summit nodes, and the y-axis
shows scaling efficiency, defined as the time a run should take assuming perfect strong
scaling within a problem size and perfect weak scaling from the base problem size,
divided by the actual run time.

the simulation domain itself shifts along with the beam at speed c.
Additionally, the entire simulation is modeled in a Lorentz-boosted
reference frame [10], using a gamma boost of 30. New plasma is con-
tinuously injected at the right-hand side of the domain, while particles
that leave the domain at the left-hand side are removed from the
simulation. The plasma consists of two particles per cell (one electron
and one proton), while the accelerated beam is comprised of electrons.
Mitigating the numerical Cherenkov instability in the modeling of a
relativistically flowing plasma, the Godrey filter [28] is applied to the
electromagnetic fields prior to gathering them to particle positions. For
the algorithmic options, we have used the Vay particle pusher [29],
the Cole–Karkkainen–Cowan FDTD solver [30], and energy-conserving
field gathering. We have again used Esirkepov current deposition with
3rd-order interpolation. To minimize the computer time needed to con-
duct these simulations, we initialize the problem to have the simulation
domain entirely filled with plasma, which would normally not be the
case when modeling an accelerator stage.

To gauge the impact of using accelerated nodes on this more realis-
tic problem setup, we have measured the FOM on Summit, defined as

FOM = num_cells < (↵ + � < ppc)_avg_time_per_it (1)

where num_cells is the total number of grid points in the simulation, ↵
is 0.1 as heuristic grid update cost, � is 0.9 for particle update costs, ppc
is the average number of particles per cell, and avg_time_per_it is the
average time per iteration after 1000 steps. We performed this measure-
ment on 4263 Summit nodes, and extrapolated this number to the full
machine assuming perfect weak scaling. Our baseline FOM was mea-
sured on NERSC’s Cori using the original Warp code. The baseline FOM
value, measured in March 2019 on 6625 Cori nodes and extrapolated to
the 9668 on the full machine, was 2.2e10. The corresponding value on
Summit, measured in July 2020, was 2.5e12, over a factor of 100 im-
provement from the baseline. Additionally, the best CPU-only FOM ob-
tained using the WarpX code was 1.0e11, also measured in March 2019.
So there is a substantial (25x) improvement in our FOM measured with
WarpX from using the GPUs on Summit, as compared to Cori.

These values are all summarized in Table 1, along with several
other data points showing the evolution of WarpX’s FOM over time.
Of particular interest, the improvement from 9/19 to 1/20 was mostly
due to optimizations in the parallel communication routines in AMReX
(Section 3.3); from 1/20 to 2/20, the addition of the particle sorting
described in Section 3.4.2; from 2/20 to 6/20, the reduction in the size
of the particle data described in Section 3.1. Finally, the improvement
from 6/20 to 7/20 was solely due to being able to run a problem with
more cells per node. This illustrates the point made in Section 3.1,

A. T. Myers et al., Parall. Comp. 108 (2021)

WarpX

Page 18

CPU & GPU: different approaches to HPC

Rank Machine Node architecture
1 (26) Fugaku (Japan) CPU (Arm)
2 (28) Summit (USA) CPU + GPU
3 (32) Sierra (USA) CPU + GPU
4 (53) Sunway TaihuLight (China) CPU + GPU
5 (7) Perlmutter (USA) CPU + GPU
6 (16) Selene (USA) CPU + GPU
7 (111) Tianhe-2A (China) CPU
8 (11) JUWELS Booster (Germany) CPU + GPU
9 (25) HPC5 (Italy) CPU + GPU
10 (180) Voyager-EUS2 (USA) CPU + GPU

CPU: 10s of very fast & independent cores
GPU: 1000s of slow cores doing the same operation

Data movement dominates computation time

Time of data migration = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + '&MMFA& MN"&
OF%PCNPHQ

CPU: low latency à high-speed serial processors
GPU: high bandwidth à high-throughput parallel processors

CPU: central processing unit
GPU: graphics processing unit (GPGPU)

https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/
Kirk, David B., and W. Hwu Wen-Mei. Morgan kaufmann, 2016.
www.top500.org

https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/

Page 19

A portability layer helps support multiple architectures

Maxence Thévenet, DESY Forum ILP 30/09/2021

Ø Performance-portability
• In particular GPU computing
• Portability layer (Kokkos, Alpaka, RAJA) C++

Ø Open Source & Open Repository
• Software can be freely used, modified and shared
• Encourages flexible, modular code
• Favor good dependency graph rather than duplication

Kokkos::ParallelFor(N,
[=] (int i) {

xp[i] += 1.;
}

);

…

for(int i=0; i<N; i++){
xp[i] += 1.;

}

CUDA (NVIDIA)
kernel(int* xp) {

int i = blockIdx.x *
blockDim.x
+ threadIdx.x;

if (i<N) xp[i] += 1; }
kernel<<<N, 256>>>(xp);

Page 20

openPMD for I/O in PIC simulations

Maxence Thévenet, DESY Forum ILP 30/09/2021

ü Archive (FAIR) & share

ü Analyze & plot (openPMD-viewer, VisualPIC)

ü Interface with other codes

Beam optics, ICS, FEL, ML

ü In-situ visualization?
Standard I/O format for particle and mesh data

Pioneered at HZDR, contributors worldwide

Yo
ur

 fa
vo

rit
e

co
de

…

openPMD: high-quality standard for particle & mesh data
• reliable tool for start-to-end simulations
• adopt FAIR principles for longevity
• encourage benchmarks and collaboration in a

(reasonably) user-friendly way.
• Good adoption in PIC community
• Wraps around performant file formats (HDF5, ADIOS2)

standard https://github.com/openPMD
API https://github.com/openPMD/openPMD-api
viewer https://github.com/openPMD/openPMD-viewer

https://github.com/openPMD
https://github.com/openPMD/openPMD-api
https://github.com/openPMD/openPMD-viewer

I. Physics of plasma acceleration

II. The particle-in-cell (PIC) method

III. High-performance computing (HPC)

IV. Recent activities at DESY

Page 22

DESY actively contributes to multiple plasma acceleration codes

Maxence Thévenet, DESY 11/11/2021

And uses more

Wake-T (DESY)

à Conceptual designs (sec-min)

MPA1

https://github.com/AngelFP/Wake-T

FBPIC (LBNL + UHH + …)

à LPA RZ with injection

LUX (M. Kirchen, S. Jalas)

https://github.com/fbpic/fbpic

HiPACE++ (DESY + LBNL)

à 3D without injection

MPA1

https://github.com/Hi-PACE/hipace

WarpX (LBNL + …)

à 3D with injection, QED

Minor contribution

https://github.com/ECP-WarpX/WarpX

or PIConGPU, OSIRIS, …

DESY/Scicomlab

LBNL (yt)DESY (VisualPIC)

DESY (VisualPIC)

Quasistatic Electromagnetic

Q
ua

si
-c

yl
in

d
ric

al
3D

Open-source Open-source

Open-source Open-source

GPU

GPU GPU

openPMD

openPMD openPMD

openPMD

https://github.com/AngelFP/Wake-T
https://github.com/Hi-PACE/hipace
https://github.com/ECP-WarpX/WarpX

Page 23

DESY actively contributes to multiple plasma acceleration codes

Maxence Thévenet, DESY 11/11/2021

And uses more

Wake-T (DESY)

à Conceptual designs (sec-min)

MPA1

https://github.com/AngelFP/Wake-T

FBPIC (LBNL + UHH + …)

à LPA RZ with injection

LUX (M. Kirchen, S. Jalas)

https://github.com/fbpic/fbpic

HiPACE++ (DESY + LBNL)

à 3D without injection

MPA1

https://github.com/Hi-PACE/hipace

WarpX (LBNL + …)

à 3D with injection, QED

Minor contribution

https://github.com/ECP-WarpX/WarpX

or PIConGPU, OSIRIS, …

DESY/Scicomlab

LBNL (yt)DESY (VisualPIC)

DESY (VisualPIC)

Quasistatic Electromagnetic

Q
ua

si
-c

yl
in

d
ric

al
3D

Open-source Open-source

Open-source Open-source

GPU

GPU GPU

openPMD

openPMD openPMD

openPMD

Beam-driven wakefield acceleration
1 GeV, 5 µm width, 20 µm emittance, 1 nC,
20 µm long, 10!" cm#$ plasma, ⁄𝑛% 𝑛& = 8

In collaboration with the WarpX team, LBNL

https://github.com/AngelFP/Wake-T
https://github.com/Hi-PACE/hipace
https://github.com/ECP-WarpX/WarpX

Page 24

HiPACE++ 1/3 – a quasi-static PIC on GPU (and CPU)

Maxence Thévenet, DESY Forum ILP 30/09/2021

3D quasi-static PIC code
Lead dev/PI(s):
DESY + LBNL
https://github.com/Hi-PACE/hipace
Language: C++
Doc: https://hipace.readthedocs.io
2021, just starting

Ø Collaboration with the ECP WarpX team

Ø C++, full re-writing of HiPACE (DESY, LBNL)

Ø GPU porting of the FULL PIC loop for orders-of-magnitude
speedup

Ø Built on top of AMReX & openPMD
• Data structures and communications
• Performance-portability (ParallelFor)
• 10000 LOC, 2000 comments
• Proper HiPACE++ code: 18% compilation time

Ø HPC programming standards
• Documented, open-source, open-repository, CMake
• Continuous Integration
• Two unit systems (normalized, SI)
• Single or double precision

à Beam-driven used in production, laser-driven work-in-progress

HiPACE++

HiPACE++: a portable, 3D quasi-static Particle-in-Cell code

S. Diederichs,1, 2, 3, ⇤ C. Benedetti,2 A. Huebl,2 R. Lehe,2

A. Myers,2 A. Sinn,1 J.-L. Vay,2 W. Zhang,2 and M. Thévenet1

1
Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany

2
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California 94720, USA

3
University of Hamburg, Institute of Experimental Physics,

Luruper Chaussee 149, 22607 Hamburg, Germany

(Dated: September 22, 2021)

Modeling plasma accelerators is a computationally challenging task and the quasi-static particle-
in-cell algorithm is a method of choice in a wide range of situations. In this work, we present the
first performance-portable, quasi-static, three-dimensional particle-in-cell code HiPACE++. By de-
composing all the computation of a 3D domain in successive 2D transverse operations and choosing
appropriate memory management, HiPACE++ demonstrates orders-of-magnitude speedups on mod-
ern scientific GPUs over CPU-only implementations. The 2D transverse operations are performed
on a single GPU, avoiding time-consuming communications. The longitudinal parallelization is done
through temporal domain decomposition, enabling near-optimal strong scaling from 1 to 512 GPUs.
HiPACE++ is a modular, open-source code enabling e�cient modeling of plasma accelerators from
laptops to state-of-the-art supercomputers.

I. INTRODUCTION

Plasma accelerators [1, 2] enable the acceleration of
charged particles over short distances due to their multi-
GeV/m field gradients. Although great progress in terms
of beam quality and stability has recently been achieved
[3, 4], significant advance is still required to make plasma-
accelerator-driven applications feasible. The Particle-in-
Cell (PIC) method [5, 6] is a reliable tool to simulate
plasma acceleration, and PIC simulations play a major
role in understanding, exploring and improving plasma
accelerators.

Simulation of a multi-GeV plasma-based accelerator
typically requires modeling sub-micron-scale structures
propagating over meter-scale distances, hence full elec-
tromagnetic PIC simulations require millions of time
steps due to the Courant-Friedrichs-Lewy (CFL) condi-
tion [7], which makes them unpractical. Several meth-
ods were developed to circumvent this limitation and
enable larger time steps, including running PIC in a
Lorentz-boosted frame [8] or using a quasi-static approxi-
mation [9–11], both of which have proved performant for
modeling of high-energy plasma accelerator stages [12–
15].

Besides algorithmic improvements, further speedup
can be accomplished from hardware improvement. Accel-
erated computing is growing in popularity in the super-
computer landscape [16], and in particular using GPUs
(Graphics Processing Units) as accelerators enabled sig-
nificant speedup in High-Performance Computing (HPC)
applications including PIC [17, 18]. The heterogeneity
of processor architectures in HPC makes it di�cult to
maintain a portable codebase but, following modern HPC
practices, this challenge can be e�ciently addressed with

⇤ severin.diederichs@desy.de.

performance-portability layers [19–21].
In this article, we present the portable, three-

dimensional, open-source, quasi-static PIC code
HiPACE++1 [22]. HiPACE++ is written in C++ and
is built on top of the AMReX [23] framework, which
provides field data structure, Message Passing Interface
(MPI) communications, and a performance-portability
layer. In particular, the quasi-static PIC algorithm
was adapted to accelerated computing, and HiPACE++
demonstrates orders-of-magnitude speedup over CPU
implementations as well as near-optimal scaling up to
hundreds of cutting-edge GPUs. These performances
enable realistic simulations of 1024 ⇥ 1024 ⇥ 1024 cells
for 1000 time steps in less than two minutes on modern
GPU-accelerated supercomputers. HiPACE++ is a
complete rewrite of the legacy C code HiPACE [14].

The article is organized as follows: Section II sum-
marizes the well-known quasi-static PIC algorithm. The
GPU-porting strategy is introduced in Sec. III. Correct-
ness of the code is demonstrated in Sec. IV. Sec. V
presents performance results and a novel parallelization
strategy improving scalability on accelerated platforms.
Additional code features are highlighted in Sec. VI.

II. THE QUASI-STATIC PARTICLE-IN-CELL
ALGORITHM

In a plasma accelerator, a driver perturbs the plasma
electrons (the ions, heavier, remain practically immobile)
and drives an electron plasma wave. While the driver can
be a laser pulse or a particle beam, we hereafter focus
on the case of a particle beam (beam-driven wakefield
acceleration) for simplicity, as this is what is currently

1
https://github.com/Hi-PACE/hipace

ar
X

iv
:2

10
9.

10
27

7v
1

 [p
hy

si
cs

.c
om

p-
ph

]
21

 S
ep

 2
02

1
arXiv

https://github.com/Hi-PACE/hipace
https://hipace.readthedocs.io/

Page 25

HiPACE++ 2/3 – the GPU porting strategy exploits fast single-GPU

Plasma electrons are disturbed by the driver, and form a wake with
large electric fields where a particle beam can be accelerated

Ø Low memory required for computing (on the device)
• 𝑁4×𝑁I×𝑁_N&`PM grid cells (𝐸, 𝐵, 𝐽, 𝜌)
• 𝑁4×𝑁I×𝑁$$* plasma macro-particles
• A few millions beam macro-particles
à All compute data on the device

Ø Many 2D Poisson solves (FFT) & Helmholtz solves (MG)
𝑁4 = 𝑁I = 2048 is a large problem
𝑁" ×𝑁MH&$M × 10 = 10a Poisson solves
à single-GPU cuFFT vs. FFTW

Ø All other operations (current deposition etc.) work well on GPU
As demonstrated by WarpX, PIConGPU, etc.

x

y

z

40 CPU cores +
10,000 GPU cores

Poster:

Page 26

HiPACE++ 3/3 – benchmarks & performance

Plasma electrons are disturbed by the driver, and form a wake with
large electric fields where a particle beam can be accelerated

100 101 102 103

Number of ranks

101

102

103

104

R
u
n

ti
m

e
[s

]

HiPACE++ single GPUHiPACE++ single GPU

HiPACE many CPUs 512 grid points

2048 grid points

Ø Excellent scaling to hundreds of GPUs

Page 27

HiPACE++ 3/3 – benchmarks & performance

Plasma electrons are disturbed by the driver, and form a wake with
large electric fields where a particle beam can be accelerated

100 101 102 103

Number of ranks

101

102

103

104

R
u
n

ti
m

e
[s

]

HiPACE++ single GPUHiPACE++ single GPU

HiPACE many CPUs 512 grid points

2048 grid points

Ø Excellent scaling to hundreds of GPUs

Ø Successfully benchmarked

Ø HiPACE++ on 1 GPU (1/4 node)

10x faster (on the JUWELS Booster) than

HiPACE on 1024 CPU codes (22 nodes)

Ø High-resolution simulations within minutes

Ø Production simulations from laptop float to HPC

A. Sinn, poster 47, Improving Performance and

Numerics of the Quasi-static PIC Code HiPACE++

S. Diederichs, poster 12, Modelling Positron

Acceleration with HiPACE++

Page 28

Conceptual design study: a plasma injector for PETRA IV (PIP4)

Maxence Thévenet, DESY Forum ILP 30/09/2021

Petra IV [1] is the upgrade of the Petra III storage ring for synchrotron radiation
(2.3 km, 6 GeV), proposing orders-of-magnitude increase in X-ray brightness.

Specs: 6 GeV, > 1 nC/s, 1% energy spread

The team

I. Agapov, S. Antipov, R. Brinkmann, A. Ferran Pousa, S. Jalas, L. Jeppe, M. Kirchen,
W. P. Leemans, A. R. Maier, A. Martinez de la Ossa, J. Osterhoff, M. Thévenet

Can the whole injector
be replaced by a LPA?

[1] https://www.desy.de/research/facilities__projects/petra_iv
[2] Kirchen, Manuel, et al. PRL 126.17 (2021); LUX PI: A. R. Maier
[3] Antipov, S. A., et al. arXiv preprint arXiv:2106.07367 (2021).
[4]A. Ferran Pousa, et al. arXiv preprint arXiv:2106.04177 (2021).

• LPA based on the LUX design [2]

• 500 MeV prototype [3] & 6 GeV injector

• Novel energy compression concepts required [4]

à CDR in 2022 (S2E simulations), commissioning in the decade

https://www.desy.de/research/facilities__projects/petra_iv/

Page 29

Other activities in theory and simulations at DESY
Positron acceleration (S. Diederichs) Plasma hydrodynamic simulations (M. Mewes)

Capillary discharge

Hydrodynamic Optical Field Ionization (HOFI)

ADVANCE lab (M. J. Garland)

S. Diederichs, poster 12, Modelling

Positron Acceleration with HiPACE++

M. Mewes, poster 31, Hydrodynamic

simulations of plasma accelerator sources

Thank you for your attention

Contributions from:
DESY Severin Dieredichs, Angel Ferran Pousa, Alberto Martinez de
la Ossa, Mathis Mewes, Alexander Sinn; LUX team
James Cook University (AU) Gregory Boyle
LBNL The WarpX team (PI: Jean-Luc Vay)
All HiPACE++ contributors

Conclusion
Ø Basic understanding of plasma acceleration

Ø Numerical simulations provide invaluable support

to the development of plasma acceleration

Ø PIC provides modelling

Ø HPC efforts benefit from modern code practices

(open-source, dependencies, portability layers)

Our efforts
Ø Improve simulation capabilities

Ø Address domain challenges

o Positron acceleration

o Plasma Injector for Petra IV (PIP4)

o Reduce energy spread (dechirper)

o Investigate plasma sources

