Laser-Electron Collisions and Laser-Plasma Interaction in QED Regime

Marija Vranic

GoLP / Instituto de Plasmas e Fusão Nuclear Instituto SuperiorTécnico, Lisbon, Portugal
epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

Erins

fif TÉCNICO
LISBOA
err

FCT 年pmest

Acknowledgements

Work in collaboration with:

IST: T. Grismayer, B. Martinez, J. L. Martins, F. Del Gaudio, R. A. Fonseca, L. O. Silva
ELI: M. Jirka, O. Klimo, G. Korn, S. Weber

Simulation results obtained at Jugene/Juqueen, SuperMUC, Jaguar, Fermi/Marconi, Salomon, MareNostrum.

IT4I SUPERCOMPUTACIÓN

What happens in a plasma in the presence of extreme fields?

LISBOA

- relativistic particles
- radiation reaction
- anomalous radiative trapping
- hard photon emission
- e+e- pair production
- QED cascades
- EM field depletion by self-created plasma

Where can these plasmas exist?

When intense lasers interact with matter

Image: Marija Vranic, European Physical Society Conference official poster 2018

In magnetospheres of neutron stars

Image: Dana Berry / NASA

Image: Event Horizon Telescope collaboration, Sgt A*

Why should we care?

There are both fundamental and practical open questions

-What is the maximum allowed field before the breakdown of the vacuum?

- Can we make particle acceleration in plasmas better with extreme laser intensities? Are there paradigm shifts?
- Can we transform cascades to positron sources? Maybe they could serve as injectors for electron-positron colliders?

Can we construct tunable radiation sources, with high conversion efficiency ranging all the way to gamma-rays? LISBOA

Classical radiation reaction

Quantum radiation reaction

Pair creation and acceleration

Facilities and orders of magnitude...

Ultra intense Laser Facilities

Apollon 2 lasers
10 PW (I50 J)
I PW (I5 J)

ELI

beamlines: 3 lasers
2×1 PW \& 10 PW (IkJ)
NP: IO PW \& γ-ray beam

CoReLS

I laser of 4 PW (100 J)

ZEUS
3 PW (80 J) \& 0.5 PW (15 J)

Pulse duration : 20-150 fs
Wavelength ~ $1 \mu \mathrm{~m}$
Intensity $\sim 10^{21}-10^{24} \mathrm{~W} / \mathrm{cm}^{2}$ Extreme acceleration regime

Which intensity?

classical nonlinear parameter $\quad a_{0}=\frac{e E_{0}}{m \omega c}$

$$
a_{0} \sim \sqrt{I_{\left[10^{18} \mathrm{~W} / \mathrm{cm}^{2}\right]} \lambda_{[\mu \mathrm{m}]}^{2}}
$$

- non relativistic

$$
a_{0} \ll 1 \quad I \ll 10^{18} \mathrm{~W} / \mathrm{cm}^{2}
$$

- weakly nonlinear, relativistic

$$
a_{0} \sim 1
$$

$$
I \sim 10^{18} \mathrm{~W} / \mathrm{cm}^{2}
$$

- relativistic, nonlinear

$$
a_{0} \sim 10 \quad I \sim 10^{20} \mathrm{~W} / \mathrm{cm}^{2}
$$

- quantum

$$
a_{0} \sim 1000 \quad I \sim 10^{24} \mathrm{~W} / \mathrm{cm}^{2}
$$

Threshold for QED processes is attainable with lasers

Schwinger critical field

$$
E_{S}=\frac{m^{2} c^{3}}{e \hbar}
$$

- Field strong enough to spontaneously create e+e- pairs from vaccuum
- Field srong enough to transfer one mc^{2} of energy to leptons over one Compton wavelength
- A laser with $\mathrm{E}_{0}=\mathrm{E}_{5}$ would have $1 \sim 1029 \mathrm{~W} / \mathrm{cm}^{2}$
- Relativistic particles can feel E_{5} in their rest frame even at $1 \sim 1022 \mathrm{~W} / \mathrm{cm}^{2}$

First QED processes

Non-linear Compton emission

Non-linear Breit-Wheeler pair creation

EM trident pair creation

What new features are needed for plasma modeling at extremes?

TÉCNICO
LISBOA

Adding classical radiation reaction

- Modelling electron beam slowdown in scattering configurations
- Modelling other configurations where only a fraction of electrons may be
 subject to RR but where this can alter qualitative behaviour
M.Vranic et al., PRL (2014); M.Vranic et al., CPC (2016); M.Vranic et al, PPCF (2018)

Adding quantum processes

- Modelling the onset of QED, RR from quantum perspective
- Modelling e+e- pair production
- QED cascades, nonlinear regimes where many particles are created and collective plasma dynamics can alter the background fields
M.Vranic et al, NJP (2016); T. Grismayer et al, POP (2016);T. Grismayer et al, PRE (2017); J. L. Martins et al, PPCF (2016); M.Vranic et al, PPCF (2017); M.Vranic et al, SciRep (2018);

Adding performance improvements (particle merging, advanced load balancing schemes)

- Essential for all the projects with strong QED effects

[^0]

Contents

Classical radiation reaction

Quantum radiation reaction

Pair creation

Osintis

 OSIRIS frameworkMassively Parallel, Fully Relativistic ${ }^{\text {a }}$ Particle-in-Cell Code
Parallel scalability to $2 M$ cores
Explicit SSE / AVX / QPX / Xeon Phi / CUDA support
Extended physics/simulation models
Open-access model

- 40+ research groups worldwide are using OSIRIS
300+ publications in leading scientific journals
Large developer and user community
Detailed documentation and sample inputs files available

Using OSIRIS 4.0
The code can be used freely by research institutions after signing an MoU
Find out more at:
http://epp.tecnico.ulisboa.pt/

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt

Classical radiation reaction + particle-in-cell algorithm

One can replace the Lorentz force in the particle pusher with the Landau \& Lifshitz equation of motion (or similar*)

Osiris
 (iv)
 técnico
 LISBOA
 UCLA

Radiation reaction in classical electrodynamics

Highest value is obtained for relativistic particles counter-propagating with a laser
Non-relativistic radiation reaction

$$
P=\frac{2}{3} \frac{e^{2}}{c^{3}} a^{2} \quad \longrightarrow \quad F_{r a d}=\frac{2}{3} \frac{e^{2}}{c^{3}} \dot{a}
$$

Relativistic motion and high field

- frequency emitted
- classical nonlinear parameter
- transverse momentum

$$
\begin{aligned}
\omega^{\prime} & \sim \gamma^{2} \omega \\
a_{0} & =\frac{e E_{0}}{m \omega c} \\
p_{\perp} & =a_{0} m c
\end{aligned}
$$

$\mathrm{E}\left[\mathrm{mc}^{2}\right.$]
$10001200 \quad 1400 \quad 1600$

Self-consistent solution given by coupling Maxwell's eq. and Lorentz force

- ultra-relativistic limit of Landau \& Lifshitz

$$
\frac{d \mathbf{p}}{d t}=\mathbf{F}_{L}-\frac{2}{3} \frac{e^{4} \gamma}{m^{3} c^{5}} \mathbf{p}\left(\mathbf{E}_{\perp}+\frac{\mathbf{p}}{\gamma m c} \times \mathbf{B}\right)^{2}
$$

Radiation dominated regime
$\begin{array}{cc}\alpha \gamma^{2} \frac{E}{E_{S}} \sim 1 & E_{S}=\frac{m^{2} c^{3}}{e \hbar} \\ \text { for laser-solid } & I>10^{22} \mathrm{~W} / \mathrm{cm}^{2}\end{array}$

All-optical acceleration and "optical wiggler"

técnico
LISBOA
$\sim 40 \%$ energy loss for a I GeV beam at $10^{21} \mathrm{~W} / \mathrm{cm}^{2}$

Output radiation on the virtual detector

All-optical acceleration and "optical wiggler"

$\sim 40 \%$ energy loss for a I GeV beam at $10^{21} \mathrm{~W} / \mathrm{cm}^{2}$

The electrons lose energy in the emission

Recent experiments show slowdown

Broad or unstable initial electron spectrum makes it difficult to get reliable quantitative measurements, of the slowdown or the energy spread.

For highly relativistic beams, most of the energy comes from the electrons (rather than the scattering laser)

M.Vranic et al., PRL II3, $13480 \mid$ (2014)
M.Vranic et al., CPC 204, I4I-I57 (2016)

Relative energy loss as a function of electron initial energy and the laser intensity (30 fs lasers)

Contents

Classical radiation reaction

Quantum radiation reaction

Pair creation and acceleration

Probability and Spectrum

Ratio of critical frequency to particle energy: χ

$$
\chi=\frac{1}{E_{S}} \sqrt{\left(\gamma \mathbf{E}+\frac{\mathbf{p}}{m c} \times \mathbf{B}\right)^{2}-\left(\frac{\mathbf{p}}{m c} \cdot \mathbf{E}\right)^{2}} \simeq \frac{\gamma F_{\perp}}{e E_{S}}
$$

QED: probability of emitting a photon per unit of time per χ

$$
\frac{d \mathcal{P}}{d t d \chi_{\gamma}}=f\left(\gamma, \chi_{e}, \chi_{\gamma}\right)
$$

in strong field, particle emit QED synchrotron like spectrum

QED PIC loop in OSIRIS

Osiris

E.N Nerush et al. PRL (20II), C. P. Ridgers et al., PRL. (20I2), N.V. Elkina et al. PRSTAB (20II),
A. Gonoskov et al., PRE (2015),T. Grismayer et al., POP (2016),T. Grismayer et al., PRE (2017)

Quantum radiation reaction

Evolution of the electron distribution function can be described through Fokker-Planck equation

Electron beam energy evolution with standard deviation
as a margin

Transport equation

$$
\frac{\partial f}{\partial t}=\frac{\partial}{\partial p_{\alpha}}\left[A_{\alpha} f+\frac{1}{2} \frac{\partial}{\partial p_{\beta}}\left(B_{\alpha \beta} f\right)\right]
$$

Average classical "drift"

$$
A \approx \frac{2}{3} \frac{\alpha m^{2} c^{3}}{\hbar} \chi_{e}^{2}
$$

Stochastic QED "diffusion"

$$
B \approx \frac{55}{24 \sqrt{3}} \frac{\alpha m^{3} c^{4}}{\hbar} \gamma \chi_{e}^{3}
$$

20

QED stochasticity introduces fluctuations in the distribution function that persist after the interaction
Classical $\mathbf{R R}$
Time $=24.00\left[1 / \omega_{p}\right]$
Quantum RR
QED stochasticity introduces fluctuations in the distribution function that persist after the interaction
Classical $\mathbf{R R}$
Time $=24.00\left[1 / \omega_{p}\right]$
Quantum RR

| QED stochasticity introduces fluctuations in the distribution function that persist after the interaction |
| :---: | :---: |
| Classical RR |
| Time $=24.00\left[1 / \omega_{p}\right]$ |
| Quantur |

QED stochasticity introduces fluctuations in the distribution function that persist after the interaction

\author{

ans
rusticity
40
20
-20

}action

Quantum RR

 action quantum RR $24.00\left[1 / \omega_{p}\right]$


```
-
```


.

Expected value for final energy spread emerges from stochastic diffusion (and we can also predict the residual beam divergence)

$$
\delta \mathbf{E}_{\mathrm{F}}=67 \mathrm{mc}^{2}
$$

$$
\begin{array}{|c|c|}
\hline \text { Final energy spread can be predicted analytically* } \\
\hline \sigma_{F}^{2} \lesssim 1.455 \times 10^{-4} \sqrt{I_{22}} \frac{\gamma_{0}^{3}}{\left(1+6.12 \times 10^{-5} \gamma_{0} I_{22} \tau_{0}[\mathrm{fs}]\right)^{3}} & I_{22}=I\left[10^{22} \mathrm{~W} / \mathrm{cm}^{2}\right] \\
\hline
\end{array}
$$

Energy vs. time for interaction with a 150 fs laser at $a_{0}=27$

Basic concepts \& classical radiation reaction

Quantum radiation reaction

Pair creation and acceleration

Parameters similar to SFQED experiment planned at FACET-II

tÉcNICO
LISBOA
A large amount of beam energy can be converted to high-frequency photons (hard X-rays and Gamma-rays)

Photon source properties

- divergence < I mrad
- tunable energy range (cutoff $>\mathrm{I} \mathrm{GeV}$)
- possible to attain very high energies ($\sim 10 \mathrm{GeV}$)
- Energy conversion ~ 40\%

I nC electron beam gives $\sim 0.2 \mathrm{pC}$ of positrons

Effective laser intensity of interaction is reduced for non-ideal beams

LISBOA

Different beam sizes and shapes lead to different positron count

Analytical model can predict the number of pairs for non-
ideal spatio temporal syncronization and realistic beam sizes*

We can also predict asymptotic properties of the electron beam and output radiation

Creating an e+e- beam from laser - e- scattering at 90°

I. LWFA electrons collide with the laser; pairs are produced in the highest field region
2. E+e- beam is accelerated by the laser in vacuum
3. Laser defocuses leaving some particles accelerated

2

M.Vranic et. al., Sci. Rep. 8, 4702 (2018)

- electrons
- positrons

Why not use a plasma channel to further accelerate the pairs?

LISBOA
A resonance between plasma background fields and the intense laser fields accelerates leptons

Direct laser acceleration (DLA) can accelerate electrons to $\sim 10 \mathrm{GeV}$. Positrons could be accelerated as well!

Positrons can indeed be accelerated within the plasma channel

The results depend on the efficiency of e+ injection and the electron beam loading (to create focusing fields)*

Positron spectra

Energy peak around I GeV

$$
\text { Charge of } \sim 0.1 \mathrm{pC}
$$

**A. Liftshitz et al, JCP (2009)

Classical vs. quantum radiation reaction can be studied in future experiments. Especially interesting is crossing the quantum threshold in the radiation-dominated regime.

E-320 experiment at FACET II will be able to create pairs and show $\sim 40 \%$ energy loss on the electrons.

Electron-positron pairs can be created and accelerated in a single stage by scattering an electron beam with a laser at 90 degrees, and accelerating in vacuum or in a plasma.

Direct laser acceleration in a plasma channel is a good candidate to accelerate positrons, or electron-positron beams (not monoenergetic, but possible to obtain high charge and energy).

Extra slides

Marija Vranic

GoLP / Instituto de Plasmas e Fusão Nuclear Instituto SuperiorTécnico, Lisbon, Portugal

epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt
ipfn
INSTITUTO DE PLASMAS
EFUSĂO NUCLEAR
$\underset{\substack{\text { INSTITUTO DE PLASMAS } \\ \text { EFUSĂO NUCLEAR }}}{ }$

What is required to convert I Joule of energy to gamma-rays?

LISBOA

The scattering configuration

High energy, low charge

- 100 pC electron bunch
- 10 GeV energy
- Laser I $10{ }^{20} \mathrm{~W} / \mathrm{cm}^{2}$

High charge, low energy

- I nC electron bunch
- I GeV energy
- Laser I ~ 10^{21} W/cm²

QED cascade

Controled emission

- Laser I~1023 W/cm²
- Low density plasma seed
- Self-created plasma $\mathrm{n}<\mathrm{a}_{0} \mathrm{n}_{\mathrm{c}}$

Emission in dense plasma

- Laser I $\sim 2 \times 10^{22}$ W/cm ${ }^{2}$
- Dense plasma seed
- Density achieved $\mathrm{n}>\mathrm{a} \mathrm{a}_{\mathrm{cr}}$

Challenges and opportunities

TÉcNICO
LISBOA
Novel configurations, or using extreme intensity as a game changer to the existing ones

New opportunities for particle acceleration

- Electron acceleration in plasma channels
B. Quiao eta al, POP (2017)
A. Arefiev et al, POP (2016) V. Khudik et al, POP (2016) L. L. Ji et al, PRL (2014) APS Robinson et al, PRL (2013) Naseri et al, PRL (2012) SPD Mangles et al, PRL (2005) A. Pukhov et al, POP (1999)
M. Jirka et al, in prep.

M.Vranic et al, PPCF (2018)
- Electron-positron production \& acceleration in one stage

M.Vranic et al, SciRep (2018)

Design of photon sources tunable up to $\mathbf{G e V}$ energies

N. Lemos, PPCF (2018); F.Albert, POP (20I8)
W. Yan, Nat. Phot (2017); Gonoskov, PRX (2017)
A. Arefiev et al, PRL (2016); J. L. Martins et al, PPCF (2016)
K.Ta Phuoc, NatPhot (2012);Z. Gong, PRE (2017)
E. Esarey PRA (I992); S. Kneip, PRL (2009)

T. Grismayer et al, POP (2016)

Challenges and opportunities

Probing the onset of non-pertubative QED

Evolution of self-generated e+e- plasmas

T. Bell and J. Kirk, PRL (2010)
A. teFedotov, PRL (2010)
S. Bulanov, PRL (2010)
E. Nerush, PRL (201I)
N. Elkina, PRSTAB (20II)
C. Ridgers, PRL (2012)
V. F. Bashmakov, POP (2015)
A. Gonoskov, PRE (2015)
M. Jirka, PRE (2016)
T. Grismayer, POP (2016)
M.Tamburini, Sci Rep (2017)
M.Vranic, PPCF (2017)
X. Zhu, NComm (2017)
T. Grismayer, PRE (20I7)

Study the classical and quantum radiation reaction

M. Tamburini, NIMR (201I); Neitz \& DiPiazza, PRL (2013); Ilderton and Torgrimsson, PLB (2013); Zhidkov, PRSTAB (2014);
M.Vranic, PRL (20|4);T. Blackburn, PRL (20I4); S.Yoffee, NJP (20I5); M.Vranic, CPC (20I6); M.Vranic, NJP (2016);
C. Ridgers, JPP (20I7): F. Neil, PRE (2017) and PPCF(2018); J. Cole PRX (2018); K. Poder PRX(20I8);

Special issues on high field laser-matter interaction physics

New Journal of Physics 2021

Focus on Strong Field Quantum Electrodynamics with high power lasers and particle beams

Plasma Physics and Controlled Fusion 2017-now

Special issue on high field laser plasma interactions associated with EPS Plasma Physics Satellite Meeting on High-Field phenomena

[^0]: M.Vranic et al., CPC (2015)

