Ti:Sa lasers as drivers for laserdriven accelerators

Stefan Karsch^{1,2}

¹ Centre for Advanced Laser Applications, LMU Munich ² Max-Planck Institute for Quantum Optics

Laser Wakefield Acceleration (LWFA)

Assumptions:

Ideal drive laser for laser acceleration

High peak power	High average power	Good wall-plug efficiency	High reliability and control
 Short pulses ⇒ Broad bandwidth High energy ⇒ Large gain medium ⇒ Practical saturation fluence ⇒ High damage threshold 	 Efficient cooling ⇒ High thermal conductivity ⇒ Low thermal birefringence Low quantum defect 	 Low quantum defect Efficient pump generation 	 Long wavelength ⇒ Less influence of all turbulence ⇒ Less 2-photon absorption (less damage) Short enough wavelength ⇒for easy detectio (silicon cameras)

Ti:Sa laser material:

First demonstrated as a tunable laser medium in 1982 by Moulton

Well suited for ultraintense lasers:

- + Extremely broad bandwidth short pulses, > 15 fs
- + extremely durable high thermal stress resistance
- + high thermal conductivity decent heat dissipation
- + "practical" saturation fluence efficient energy extraction
- Short upper state lifetime laser pumping required
- Approx. 33% quantum defect only moderate transfer efficiency

CPA principle: Avoid nonlinear propagation and damage issues

Compressor:

Stretcher-compressor pair: complementary effect

Stretching factor per bandwidth ~ size

 \Rightarrow Large bandwidth of Ti:Sa yields relatively compact setup

Nd-glass Petawatt compressor

Ti:Sa Petawatt compressor

Shit happens... (May 11, 2021)

Temporal contrast: Why is it so important?

Ion acceleration/ Harmonic generation: Causes premature plasma expansion

Bernert et al., Scientific Reports 12, 7287 (2022)

See also: Haffa et al, Scientific Reports 9, 7697 (2019)

Electron acceleration:

Causes co-moving, lateral density modulations in background plasma

Temporal contrast: causes

ASE (amplified spontaneous emission)

- Spontaneous light amplified in the laser chain
- optimized amplifier geometry, high seed level, low losses, spatial filtering, double CPA

Post pulses: reflections off mirror backside

- fine-ground or wedged substrates
- rotating periscopes instead of waveplates
- causes apparent replicas in measurement setup
- can turn into prepulses via nonlinear propagation and gain

Scatter tail: stochastic delay of scattered light

- clean optics, high-quality coatings Coherent contrast: random phase errors from nonlinear propagation and scattering off gratings
- Low-scatter gratings, optimized geometry
- Avoid nonlinear propagation

Spatial contrast:

-300

-100 y [microns]

100

200

ASE: Transverse lasing

- Disk geometry \rightarrow large gain in direction of diameter.
- Birefringence favours gain \perp c-axis
- Fresnel reflection from disk edge sets up a cavity
- \rightarrow Strong gain depletion \perp c-axis visible in fluorescence signal
- Index-matched absorptive liquid around crystal circumference destroys the lasing cavity.
- Short pump times of Ti:Sa facilitate ASE mitigation.

Laux et al., Optics Letters **37**, 1913 (2012)

Fig. 4. (Color online) Fluorescence of the Ti:sapphire crystal with (a) ethanol and (b) refractive index liquid mixture. The C-axis is horizontal.

ATLAS-3000: current performance

near field

far field

contrast

Air turbulence:

Moving from 100 TW to PW: as beam size an turbulence.

Moving from 100 TW to PW: as beam size and optical path increase, so does susceptibility to air

ir

Spatio-temporal couplings: large broadband laser beams exhibit them due to chromatic aberrations

Lowest order effect: Angular chirp causes pulse front tilt:

Pulse arrives at different time at different positions in space \Rightarrow STCs

static wavefront aberrations + chromatic optics (gratings) \implies higher order STCs

 $\frac{\text{fluctuating wavefront aberrations (air turbulence) + chromatic optics}}{\Rightarrow \underline{\text{fluctuating high-order STCs: Crucial for stability}}$

A. Borot, F. Quere, Optics Express 26, 26444 (2018): Spatio-temporal E-field of the UHI100 laser

Scanning methods (INSIGHT, TERMITES) cannot detect the fluctuations

STCs by chromatic optics

Chromatic lens causes pulse front curvature (PFC)

Off-center bundle in chromatic lens causes PFC and pulse front tilt (PFT

Replace "perfect" lens telescope by reflective expander

- Yet still detect PFT after beam shift \Rightarrow expander in practice is not free from STCs
- (A(po)) chromatic lenses are free from PFT/PFC (\Rightarrow) Triplet lens expander between AMP1 and AMP2 is designed as apochromatic within lambda/50

Residual STCs adversely affect electron performance

Lens expander, aperture after compressor 8J on target, f/33

	-		1	1
	Contraction of the second s			
		Т		
			1	1
		1	1	
			1	
		-		
			1	1
	113			
	-		1	,
			1	1
100 200 300 40				
100 200 300 40	-			
100 200 300 40				
100 200 300 40				
100 200 300 40				
100 200 300 40				
100 200 300 40				
	(00 20	30 30	00 40
Energy IMeV/I		Fnero	/ [Me\/]	

no expander, no aperture 8J on target, f/33

Energy [MeV]

Ti:Sa laser systems worldwide:

Ti:Sa laser scalability issues:

- High average power pump lasers
- Cooling of multi-kW amplifiers •
 - Heating of optics
- Contamination of optics
- Targetry
- Radiation safety

0

KALDERA project at DESY - 100TW @ kHz LPA Drive Laser Science Case

Science Case

- > Active feedback
- > Competitive repetition rate
- > Technology demonstrator

Goal:

- > 100 TW @ kHz, 3J @ 30 fs laser pulse
- > FEL-quality electron beams: sub-percent energy spread, sub-percent energy stability

Andi Maier, Project Leader

Initiated by Wim

High Average Power Pump Laser

Technology Candidates

Massively parallel fibre lasers (LLE Rochester)

- > Based on cheap few-mJ fibre
- > Massively parallel architecture with
 - ~3000+ fibers

Cryo-cooled Yb:YAG disk lasers (J. Rocca, CSU / M. Pergament (DESY))

- > Joule class pulses @ kHz demonstrated:
 - Opt. Lett. 45, 6803 (2020)

M Pergament et al.

> Opt. Lett 41, 2089 (2016)

Amplifier Cooling:

Liquid or gas-cooled multislabs:

V. Chvykov, Crystals 11, 841 (2021)

Active mirror:

Sketch similar to C. Baumgarten et al., Optics Letters 41 3339 (2016) M.Krüger et al., in preparation

Relay imaging used to minimize wavefront distortions and amplitude modulation

Gas-cooled amplifier head design based on Mercury

Slide courtesy Bedrich Rus, ELI-BL

He gas-cooled Ti:sapphire PW amplifier head in L3-HAPLS

Lawrence Livermore National Laboratory

Fyzikální ústav Akademie věd České republiky

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání <u>کې</u>

Hard edge cladding (LLNL proprietary) compatible with average power loading ~1 W/cm² and vacuum environment

Thermal wavefront distortion is low (<1.4 λ), almost entirely spherical

Amplifier Cooling: cryogenics

Fig. 4. Temperature dependences of thermal conductivity of ticor with different titanium content: 1 - nominally pure, 2 - 0.06 %; 3 - 0.08 %; 4 - 0.2 %; 5 - 0.5 %.

Popov et al., Functional Materials 18, 476 (2011)

 α L = 2.3 \triangleq 90% pump absorption

Longer crystal allows lower doping concentration and better conductivity

greater length offsets this benefit: optimization game

Data from Crytur website, https://www.crytur.com/materials/tisapphire/

Pulse Compressor

Well-known issues at high average power

> Heat-induced substrate deformation causes spatio-temporal couplings

> ULE type substrate helps

V. Leroux et al., Opt. Express 28, 8257 (2020); V. Leroux et al., Opt. Express 26, 13061 (2018); Li et al., Optics Express (2018); Li et al., Appl. Physics (2017); Opt. Express 24, 30015 (2016)

T. Eichner et al.

> (Simple) active cooling helps > But surface temperature increases

Optics contamination:

Blackening of gratings at high intensity

Affects last compressor grating, 10⁶ shots at 100 mJ/cm² @ 5Hz 10⁷ shots at 6.5 mJ/cm² @ 1 kHz

Blackening of dielectric mirrors is less well known

typically 10⁴ shots at 35 mJ/cm² @ ¹/₄ Hz

Happens long before grating shows contamination

Optics contamination:

ATLAS-3000 compressor

Coating/surface	Degradation	Cleaning stra
Gold grating (p to surface, s to grooves)	Hardly noticeable (many months)	in-situ plasn
E-beam HR coating (s-pol)	Weak (several weeks)	in-situ UV
E-beam HR coating (p-pol)	Strong (days)	in-situ plasn
Enhanced silver (sputtered)	none	(in-situ UV

- Oil in porous surface (manufacturer's guess)?
- Electrostatic charge-up (from p vs. s)?

Ti:Sa pros and cons:

- Broad bandwidth required for 100TW-class lasers
- Relatively efficient energy storage and extraction
- Cryogenic operation does not limit bandwidth
- Very tough laser material
- Compact stretcher and compressor setups
- ns laser pumping allows better ASE control than ms diode pumping
- Availability and technological maturity

ns-laser pumping required – efficiency, cooling

- Broad bandwidth increases sensitivity for spatio-temporal couplings and high order phase terms
- Full bandwidth too broad for MLD gratings
- Quantum defect larger than Nd, Yb or Tm materials
- Shorter wavelength than Nd, Yb or Tm makes optics more susceptible to damage from 2photon absorption.

