

UNIVERSITY OF MARYLAND AT COLLEGE PARK

Dept. of Physics Dept. of Electrical and Computer Engineering Institute for Research in Electronics and Applied Physics

Optical guiding of high intensity laser pulses for laser wakefield acceleration

B. Miao, J. Shrock, L. Feder and H. M. Milchberg

Collaborators:

S. Wang, R. Hollinger, H. Song, J. Rocca (Colorado St. Univ.) A. Picksley (Oxford, LBNL), S. Hooker (Oxford)

WE-Heraeus-Seminar May 15-18, 2022

- Laser wakefield acceleration (LWFA) and its laser/plasma requirements for multi-GeV bunches
- Optical guiding in plasmas relativistic self-guiding preformed plasma waveguides laser-generated waveguides capillary discharge waveguid ۲

- capillary discharge waveguides
- Recent multi-GeV acceleration results ٠ metre-scale, low density plasma optical fibres (for future high rep. rate 10 GeV stage)

Laser wakefield acceleration (LWFA)

Ponderomotive force \mathbf{F}_p expels electrons from high intensity region and drives plasma wave

$$\begin{split} F_p &\propto -\nabla(a^2) \\ a &= \frac{eA}{mc^2} \quad a \lesssim 1 \\ a &= 1 \\ a &= 1 \\ a &= 1 \\ c^2 \\ c^2$$

- wakefield $E_z \propto N_e^{1/2}$
- accelerating force $F = -eE_z$
- energy gain $\Delta W = eE_zL_d$

dephasing length

Density and intensity scaling in LWFA

quasi-

- Dephasing length = $L_d \propto N_{cr}/N_{\rho}^{3/2}$, $E_z \propto N_{\rho}^{1/2} \longrightarrow \Delta W = E_z L_d \propto N_{\rho}^{-1}$
- Scaling of single stage energy gain in LWFA •

W. Lu et al., Phys. Rev. Spec. Top. $\frac{\Delta W_{max}}{m_e c^2} \sim a_0^2 \frac{N_{cr}}{N_e} \qquad \begin{array}{c} \text{linear} \\ \text{regime} \end{array} \qquad \frac{\Delta W_{max}}{m_e c^2} \sim a_0 \frac{N_{cr}}{N_e} \qquad \begin{array}{c} \text{bubble} \\ \text{regime} \end{array} \qquad - \text{Accel. Beams 10, 061301 (2007).} \\ \text{regime} \\ \text{S. Gordienko and A. Pukhov, Phys.} \end{array}$ - Accel. Beams 10, 061301 (2007). Plasmas 12, 043109 (2005).

Employ guiding to make acceleration length as long as possible so $L_{guide} \leq L_d$

For example: $\Delta W_{max} \sim 10$ GeV satisfied by $\frac{N_{cr}}{N_{c}} \sim 10^4$, $a \sim 2.5$, $L_{guide} = 20$ cm $\leq L_d$ Low density ($\sim 10^{17}$ cm⁻³), "modest" intensity, metre scale acceleration length

Laser couples efficiently (resonantly) to the plasma wave when

$$c\tau_{laser}\approx \frac{\lambda_p}{2} \propto N_e^{-1/2}$$

Optical waveguides: requirements

Nonlinear self-focusing and waveguiding

Relativistic self-focusing in plasma: requirements

$$n = n_0 + \eta_2 a^2 \implies$$
 index bump $\Delta n = \eta_2 a^2$, where $\eta_2 = \frac{1}{4} \frac{N_e}{N_{cr}}$ in plasma

Defeat diffraction requirement: $\Delta n = \frac{1}{2}(kz_0)^{-1} = \eta_2 a^2$

→
$$P_{SF} \sim 17.4 \ N_{cr}/N_e$$
 (GW)

Message: low plasma density demands high peak laser power:

At
$$\lambda = 800 nm$$
 and $N_e = 10^{17} cm^{-3}$, $P_{SF_{,min}} \sim$ "petawatt class"

By contrast, for 'near critical' densities $\frac{N_e}{N_{cr}} > 0.1$, have $P_{SF} < 1 \text{ TW}$ A. Goers *et al.*, PRL **115**, 194802 (2015)D. Guénot *et al.*, Nat. Phot. **11**, 293 (2017)F. Salehi *et al.*, PRX **11**, 021055 (2021)

Optical waveguides in plasma

Collisionless plasma refractive index: $n^2 = 1 - \omega_p^2/\omega^2 = 1 - N_e/N_{cr}$ For $\lambda_{laser} = 800 \ nm$, $N_{cr} = 1.7 \times 10^{21} \ cm^{-3}$

For $N_e < 10^{19} cm^{-3}$ typically used for LWFA, $N_e/N_{cr} < 0.005$

 $\rightarrow n \approx 1 - N_e/2N_{cr} \rightarrow \Delta n = -\Delta N_e/2N_{cr}$

Relativistically self-guided laser pulses

Relativistic self-focusing leads to pulse "collapse", which saturates or 'arrests' due to ponderomotive charge expulsion, giving rise to self-guiding in a self-consistent plasma density depression

J. Osterhoff *et al.*, PRL **101**, 085002 (2008) F. Dorchies *et al.*, Phys. Rev. Lett. 82, 4655 (1999) *non-discharge capillary* G. Genoud *et al.*, Appl. Phys. B (2011) **105**:309

Preformed plasma waveguides: capillary discharge

Y. Ehrlich *et al.*, PRL **77**, 4186 (1996) ← *no gas fill* A. Butler, D. J. Spence, and S. M. Hooker, PRL **89**, 185003 (2002)

~4 GeV and ~8 GeV results with capillary discharge waveguide

Laser-generated waveguides

principle

femtosecond filament-induced single-cycle acoustic wave

J.K. Wahlstrand *et al.* Opt. Lett. **39**, 1290 (2014) N. Jhajj *et al.*, PRX **4**, 011027 (2014) *neutral air waveguides, much slower timescales than for plasma*

Recent results: 40 meter air waveguides

Preformed plasma waveguides: Bessel beam-generated

(self-interfering conical wavefronts)

Bessel-generated hydrodynamic plasma waveguides

C. G. Durfee and H. M. Milchberg, PRL **71**, 2409 (1993) T. R. Clark and H. M. Milchberg, PRL **78**, 2373 (1997)

Laser-generated plasma waveguide vs. capillary discharge

- capable of high rep. rate, limited by laser technology
- thermally cool, plasma standoff from structures
- negligible material surface erosion
- design flexibility for core, cladding, and z-variation
- Diagnostic access from all directions

- Rep. rate limited by local heat load and capillary surface erosion
- Damage from drive pulse misalignment or poor focus
- Core/cladding geometry fixed by capillary inner diameter; laser conditioning of plasma necessary
- Diagnostic access challenging

OFI-heated hydrodynamic waveguides using < 100 fs pulses Optical field ionization: N. Lemos et al., Phys. Plasmas 20, 063102 (2013). depends on peak R. J. Shalloo et al., Phys. Rev. E 97, 053203 (2018) N. Lemos et al., Sci. Rep. 8, 3165 (2018). intensity only R. J. Shalloo et al., Phys. Rev. Accel. Beams 22,041302 (2019). S Smartsev, Opt. Lett. 44,3414 (2019) elongated plasma A.Picksley *et al.*, Phys. Rev. Accel. Beams 23, 1 (2020). B. Miao et al., PRL 125, 074801 (2020). launches L. Feder et al., PRR 2, 043173 (2020). single-cycle BUT acoustic wave $k_B T_e \sim U_{ponder} (I_{OFI}) < 10 \text{ eV}$ at $I_{OFI} \sim 10^{14} \frac{W}{cm^2}$ for hydrogen into ambient gas In low density H₂, get wimpy <u>plasma</u> 'shockwave' with low walls or no walls • In low density H₂, OFI-based heating leads to very *leaky* guides or no guides at all ! Must somehow provide the waveguide 'cladding'

2 colour interferometer probing reveals separate plasma and neutral H₂ contributions

L. Feder et al., PRR 2, 043173 (2020).

Guiding in neutral H₂ shock annulus

Cladding solution #1: 2-Bessel method for separately imprinting core and cladding plasma

Measurement of Bessel beam focus

Important considerations if you want to do this

1. You need a high quality Bessel beam profile along meter-scale distances

Important considerations if you want to do this

2. You need meter-scale supersonic gas jets---

Interferometric measurements of plasma fiber structure

PRL 125, 074801 (2020)

$J_0 + J_a$ plasmas: flexible step index optical fibre

PRL 125, 074801 (2020)

PRL **125**, 074801 (2020)

20 consecutive shots in gas jet

Cladding solution #2: "Self-waveguiding" – no J_q used.

Two-colour interferometric probing reveals separate plasma and neutral H₂ contributions

Guiding in neutral H₂ shock annulus

Self-waveguiding: simulations and experiment

L. Feder et al., Phys. Rev. Res. 2, 043173 (2020)

400nm probe guiding & 800 nm self-waveguiding

Also verifies that plasma waveguide mode size is λ-independent

L. Feder et al., Phys. Rev. Res. 2, 043173 (2020)

Experiments at Colo. St. Univ. using self-waveguiding

guided pulse off

guided pulse on

B. Miao et al, arXiv

LWFA Experiments at Colo. St. Univ. using *diffractive axicons* and *self-waveguiding*

20 cm guide transmission vs density and injected pulse energy, pure hydrogen guide

- At low a_0 , transmission loss from self-waveguiding erosion.
- At higher a_0 , laser energy \rightarrow plasma waves

Shots to 5-6 GeV, beam charge \sim 10 pC, divergence \sim 1 mrad

- Optical guiding in low density plasma—self-guiding and in plasma waveguides—is crucial for a 10 GeV accelerator stage. Ultimately, efficiency and control favour plasma waveguides.
- Meter-scale, low density plasma waveguides are now here, at a (compressed) laser energy cost of ~1-2 J/m. We demonstrated 2 techniques for low density waveguide generation: the "2-Bessel method" and "self-waveguiding". Results show 5-6 GeV acceleration with 20cm guides.
- Flexibility, control, and diagnosability enabled by our methods using *Bessel* beams and meter-scale supersonic gas jets will lead to significant improvements in e-beam quality, stability, and energy in the near future.