Science & Applications of Plasma-Based Accelerators Session on Plasma Astrophysics (May 18, 2022)

Frank Jenko

Max Planck Institute for Plasma Physics, Garching TU Munich & UT Austin

Plasma Astrophysics (Convener: Frank Jenko)		
09:00 - 09:05	Frank Jenko	Introduction
09:05 - 09:35	Frederico Fiuza	Cosmic-Ray Driven Instabilities
09:35 – 10:05	Tony Bell	The Surprising Effectiveness of Cosmic Ray Acceleration
10:05 – 10:30	Discussion	

The golden age of plasma astrophysics

- Most of the visible Universe is in a turbulent, magnetized plasma state
- Many key open questions in astrophysics and astroparticle physics involve plasma physics, from the acceleration and propagation of high-energy cosmic rays to the role of turbulence and magnetic fields in the formation of galaxies, stars, and planets...
- Highlight: **multi-messenger astronomy** (combine information from electromagnetic radiation, cosmic rays, neutrinos, and gravitational waves to investigate high-energy processes in the Universe)

Confluence of new capabilities in observation/experiment & theory/simulation

Plasma physics – connecting the dots

Fusion plasmas

Space plasmas

Laboratory plasmas

FEYNMAN'S REMARKS

Seemingly disparate complex non-equilibrium systems can actually be closely connected!

A "provocative" statement by **Richard Feynman**:

"It is actually quite possible for a physicist to retain a broad knowledge of the physical world rather than to become a specialist in some narrow area."

He gives three reasons:

- Same **physics principles** connecting different kinds of phenomena
- Same fundamental laws underlying these phenomena
- Same equations (and analytical / numerical techniques to solve them)

Richard Feynman, Lectures on Physics, Vol. II, Ch. 12

A recent example

Building bridges between the lab and nature

Tools originally developed for fusion research are exported to plasma astrophysics

How does plasma turbulence dissipate energy at the (kinetic) tail of the MHD cascade?

PHYSICAL REVIEW LETTERS 120, 105101 (2018)

Fully Kinetic Simulation of 3D Kinetic Alfvén Turbulence

Daniel Grošelj,¹ Alfred Mallet,² Nuno F. Loureiro,³ and Frank Jenko¹ ¹Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany ²Space Science Center, University of New Hampshire, Durham, New Hampshire 03824, USA ³Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Fully kinetic PIC simulations support GENE results [Told PRL 2015; Bañón Navarro PRL 2016]

Plasma physics for astrophysics: CR propagation

Just an example

THE ASTROPHYSICAL JOURNAL, 711:997–1007, 2010 March 10 © 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637X/711/2/997

SCALING THEORY FOR CROSS-FIELD TRANSPORT OF COSMIC RAYS IN TURBULENT FIELDS

T. HAUFF¹, F. JENKO¹, A. SHALCHI², AND R. SCHLICKEISER² ¹ Max-Planck-Institut für Plasmaphysik, EURATOM Association, 85748 Garching, Germany ² Institut für Theoretische Physik, Lehrstuhl IV: Weltraum-und Astrophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany *Received 2009 October 22; accepted 2010 January 28; published 2010 February 19*

THE ASTROPHYSICAL JOURNAL, 811:8 (12pp), 2015 September 20 © 2015. The American Astronomical Society. All rights reserved.

doi:10.1088/0004-637X/811/1/8

COSMIC-RAY PITCH-ANGLE SCATTERING IN IMBALANCED MHD TURBULENCE SIMULATIONS

MARTIN S. WEIDL¹, FRANK JENKO², BOGDAN TEACA³, AND REINHARD SCHLICKEISER⁴ ¹Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany ²Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA ³Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB, UK ⁴Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany *Received 2015 February 19; accepted 2015 August 8; published 2015 September 11*

Plasma physics and black holes

Accelerating Plasma Mirrors to Investigate the Black Hole Information Loss Paradox

Pisin Chen^{1,2,*} and Gerard Mourou^{3,†}

UHECRs from relativistic AGN jets? Alves+ PRL 2018

Fully kinetic simulations: magnetized jets are susceptible to helical kink instabilities

Max Planck Institute for Plasma Physics (IPP)

- IPP was founded in 1960 by Werner Heisenberg
- IPP has 1100 staff (700/400 at Garching/Greifswald) and operates two large experiments (ASDEX Upgrade, W7-X)
- Focus on fusion energy, but also active in basic plasma physics and plasma astrophysics

Tony Bell

University of Oxford, Imperial College, Rutherford Appleton Laboratory <u>Awards</u>: Fellow of the Royal Society, Hoyle Prize 2014, Eddington Medal 2016, Alfven Prize 2017, Yodh Prize 2021

<u>Research</u>: particle acceleration by shock fronts; laser-produced plasmas; magnetic field amplification by cosmic rays; QED plasmas; plasma astrophysics

Frederico Fiuza

Theory Group Leader at the High Energy Density Science division at SLAC <u>Awards</u>: John Dawson Award 2020; Thomas H. Stix Award 2018; DOE Early Career Research Program Award 2017; EPS PhD Research Award 2013 <u>Research</u>: kinetic simulations & HED experiments to explore a wide range of topics in astrophysical and laboratory plasmas, including particle acceleration, magnetic field amplification, collisionless shocks, magnetic reconnection, and fusion energy

Plasma-Based Accelerators: Opportunities

Identifying and understanding cosmic accelerators (UHECRs!) Bridging laboratory and astrophysical plasmas

- Exploring existing experimental facilities to their full potential
- Simulation as a bridge between experiment and astrophysics
- Possible goals: Understand basic plasma processes, validate codes...

Pushing the (theory) envelope...

- Exascale computing allows for new kinds of simulations
- Plasmas under extreme conditions (GR, radiation, QED...)

Connecting the dots...

- Plasma processes (turbulence, reconnection, dynamos, shocks, radiation...)
- Spatio-temporal scales (mic vs mac)
- Scientific disciplines (plasma physics, astrophysics, space physics, HEP...)