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Artificial intelligence / machine learning is a vast, diverse field

A set of mathematical techniques:

• Neural networks
• Tree-based methods
• Gaussian Processes
• Support Vector Machines
• Principal Component Analysis (PCA)
• k-Nearest Neighbors
• Genetic algorithms
• …

that solve certain tasks based on data:

• Classification
• Regression
• Natural language processing
• Dimensionality reduction
• Recommendation
• Optimization
• …
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Optimization task for plasma-based accelerators

Simultaneously adjust
many parameters

• Gas density
• Concentration of 

various elements
• Laser energy
• Laser focal position
• Laser spectral properties
• Laser waist
• …

in order to maximize one 
(or several) objective function:

e.g.
• Electron emittance
• Electron energy 
• Electron energy spread
• Electron charge
• Combinations thereof
• …

relevant for both simulations (design optimization) and experiments (real-time tuning)



Optimization is usually done in high-dimension

1D: 2D: Multi-dimension:

Input x1
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Input x1

Example:
x1 = laser energy
f = beam energy spread

Example:
x1 = laser energy
x2 = gas density
f = beam energy spread

x is a high-dimensional vector 
that contains the tunable 
parameters

x =

0
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Laser energy
Gas density
Laser chirp

...
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Example:

Aim:
Find xmax such that f(xmax) is maximal

f



High-dimensional optimization is expensive

Aim:

Motivation: evaluations of f are usually costly

• Design studies:
Evaluations of f require computationally
expensive numerical simulations

• Online tuning:
Evaluations of f take time on the experiments
Parameters of the machine may drift if it 
takes too long to find the minimum.

Find xmax such that f(xmax) is maximal, 
with few evaluations of f f



An example of naïve algorithm: random search

f

Algorithm:
Evaluate f at randomly chosen points.
At the end: find the best point among them.

Practical consideration:

• Takes a long time to even reach interesting regions.

• May evaluate points that are close to 
each other and do not bring significantly
more information

• Does not use the information from previous 
evaluations of f to decide which point to evaluate next.



Looking for a more efficient algorithm: model-based optimization

• One way to be more efficient would be to build a guess 
(or a model) of the function f at unexplored location. 

• By nature, this model would need to be probabilistic
and quantify the uncertainty about the values of f.

• This model could then be used to automatically select
points that are worth evaluating.
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Defining an appropriate model

Desirable properties:

• The model should interpolate previous data

• The uncertainty should grow away from previous data

• The scale of variation of the model should match 
the scale of variation of previous data.

• The model should naturally generalize to high dimension
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Gaussian process

The user defines a kernel function 𝑘(𝒙, 𝒙!), which reflects 
assumptions on how different points are correlated.

k(x,x0) = �2
f exp
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◆For instance:

Given 𝑁 previous evaluations {𝒙", f(𝒙")}"#$,…,', 
the probability distribution of y(𝒙∗) at a new input 𝒙∗ is 
predicted to be Gaussian: 𝑦 𝒙∗ ∼ 𝒩 𝑚 𝒙∗ , 𝜎) 𝒙∗

{𝒙", f(𝒙")}"#$,…,'

m(x⇤) = k⇤TK�1y

�2(x⇤) = k(x⇤,x⇤)� k⇤TK�1k⇤

𝐾: matrix of size 𝑁×𝑁, defined by 𝐾"* = 𝑘(𝒙", 𝒙*)
𝒚 ∶ vector of size 𝑁, containing previous evaluations: yi = f(𝒙")
𝒌∗: vector of size 𝑁, defined by 𝑘"∗ = 𝑘(𝒙", 𝒙∗)

(Rasmussen & Williams, “Gaussian Process for Machine Learning”)

x⇤



Gaussian process: hyperparameters

k(x,x0) = �2
f exp
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◆m(x⇤) = k⇤TK�1y

�2(x⇤) = k(x⇤,x⇤)� k⇤TK�1k⇤

𝐾: matrix of size 𝑁×𝑁, defined by 𝐾"* = 𝑘(𝒙", 𝒙*)
𝒚 ∶ vector of size 𝑁, containing previous evaluations: yi = f(𝒙")
𝒌∗: vector of size 𝑁, defined by 𝑘"∗ = 𝑘(𝒙", 𝒙∗)

𝜎+) and ℓ (the “hyperparameters”) are automatically 
tuned in order to match the amplitude and length scale
of the typical variations in the data.
(e.g. using maximum likelihood)



Gaussian process with estimated noise

k(x,x0) = �2
f exp
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𝐾: matrix of size 𝑁×𝑁, defined by 𝐾"* = 𝑘(𝒙", 𝒙*)
𝒚 ∶ vector of size 𝑁, containing previous evaluations: yi = f(𝒙")
𝒌∗: vector of size 𝑁, defined by 𝑘"∗ = 𝑘(𝒙", 𝒙∗)

(Rasmussen & Williams, “Gaussian Process for Machine Learning”)

𝜎, is also a hyperparameter that is automatically 
tuned in order to match the data.
(e.g. using maximum likelihood)

m(x⇤) = k⇤T (K + �⌘
2)�1y

�2(x⇤) = k(x⇤,x⇤)� k⇤T (K + �⌘
2)�1k⇤ + �⌘
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Gaussian process: practical considerations

Computational cost:
Training: scales as N3,
Predicting: scales as N2

(where N is number of data points)
Only worth it when the function f to optimize is costly.

m(x⇤) = k⇤TK�1y

�2(x⇤) = k(x⇤,x⇤)� k⇤TK�1k⇤

Choice of kernel:
Encodes preexisting knowledge (or lack thereof)
about the way in which the function varies 
e.g. anisotropy, correlation between dimensions, 
smoothness, etc.

k(x,x0) = �2
f exp
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Open-source packages:
Many open-source implementation, e.g. scikit-learn, gpytorch
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Bayesian optimization

Now that we have an appropriate model:
we need to define a rule to automatically decide 
which point to evaluate next.

The rule should result in a healthy mix of:

• Exploration:
Evaluating points where the function has high uncertainty

• Exploitation: 
Evaluation points close to the known best point, 
in the hope of finding an even better value.



Bayesian optimization

Rule:
Evaluate f at a point that maximizes 
a well-chosen acquisition function.

Example of a standard acquisition function: 
Upper Confidence Bound (UCB)

a(x) = m(x) + ��(x)

Example of another acquisition function: Probability of Improvement (PI), Expected Improvement (EI)

UCB



Bayesian optimization: full algorithm

Compute the acquisition function
Find the input x0 that maximizes it

Evaluate f(x0)
(i.e. run a simulation, or 
take a measurement on 
the experiment)

Add the point x0, f(x0) 
to the dataset and update
the Gaussian Process model
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Applications of Bayesian optimization in laser-plasma acceleration

6 input parameters tuned simultaneously, to maximize the betatron X-ray yield. 

R. Shalloo et al., Nature Communications (2020)



Applications of Bayesian optimization in laser-plasma acceleration

Tuning:
• background density
• amount of N2 injected
• laser energy
• laser focal position
in order to maximize beam quality in ionization injection

S. Jalas et al., PRL (2021)
f =

p
Q

Ē

�E



Some areas of current research

• Multi-fidelity Bayesian optimization
Using low-fidelity simulations to rapidly scan the parameter space
and high-fidelity simulations when focusing on the optimal point

• How to satisfy safety constraints
esp. for quantities that are difficult to predict 
and require simulation / experiments (e.g. beam loss)

• Proximal optimization
For experiments: how to avoid repeated, 
large jumps in input parameters

F. Irshad et al., arXiv:2112.13901 (2021)
F. Irshad, Heraeus seminar poster (2022)
A. Ferran-Pousa et al., IPAC 2022

safety constraints
objective

Kirschner et al., arxiv: 1902.03229 (2019)

R. Roussel et al., 
arxiv:2010.09824 (2021)

https://arxiv.org/abs/2112.13901


Some limitations of Bayesian optimization

• Scaling with number of data points N (scales as N3)

• Scaling with input dimensions (limited to ~10 input parameters in practice)

• Inefficient for high-dimensional output
(essentially need to build a separate GP for each output)
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Uncertainty in machine learning

Idea: The ML model should output a prediction and the corresponding uncertainty.

The uncertainty indicates the probable interval within which an actual evaluation may be. (e.g. actual 
measurement or simulation)



Motivation for accelerators: optimization

In the context of model-based optimization of accelerators: 
uncertainty allows to balance exploration and exploitation.
(e.g. by calculating upper confidence bound, expected improvement)
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Motivation for accelerators: safety constraints
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For safe operation of accelerators:
uncertainty helps ensure that important constraints are not violated.



Epistemic and aleatoric uncertainty

Underlying function
always gives the same
result, for a given x

Intrinsic noise
value changes for 
each evaluation

Evaluations can often be modeled as: 

f(x) = f̃(x)+⌘

Epistemic uncertainty:
uncertainty on underlying function

• increases when making predictions far from 
known data

• decreases when acquiring more data

Aleatoric uncertainty:
estimates the amplitude 
of the noise



Epistemic and aleatoric uncertainty

Depending on the application, one may or may 
not want to include the aleatoric part:

Examples:

Optimizing beam emittance, 
with noisy beam size measurements:
the aim is to optimize the underling function    ;
the aleatoric part should not be included.

Keeping fluctuating beam loss under a threshold:
take into account aleatoric part, in order to evaluate 
the “worst-case scenario”.

f̃



Obtaining uncertainty: ensemble of neural networks

Regular neural network Ensemble of neural network (N=3)

Due to randomness in initialization and training, each neural 
network has different weights, 
and gives a different answer.

Use the mean as the prediction
Use the standard deviation as the uncertainty



Example: uncertainty on virtual diagnostics
O. Convery et al., arXiv:2105.04654v1 (2021)

(coherent diffraction radiation)

2 different 
shots

Ensemble of 16 independent neural 
networks, trained with bagging:
• input: full IR spectrum
• output: 1d beam current profile



Conclusion

• Gaussian process is a machine learning model
that can predict data and the corresponding uncertainty

• This model is used within Bayesian optimization in order to optimize 
a function while minimize the number of expensive evaluations (simulations or measurements)

• Bayesian has recently been used in several accelerators, for autonomous tuning

• More generally, estimating uncertainty is key for scientific applications, 
but the combination with the latest ML techniques (e.g. neural networks) is less mature.



Additional resources: U.S. Particle Accelerator School course on
Optimization and Machine Learning for Accelerators

Course material + most videos freely available online at 
https://slaclab.github.io/USPAS_ML/past_sessions/summer_2021/

https://slaclab.github.io/USPAS_ML/past_sessions/summer_2021/

