The Strong CP Problem and the Axion Solution

Emmanouil Koutsangelas

IMPRS Colloquium 20th October 2022

*One can give a whole course on strong CP and the axion solution, so goal is to give a non-technical overview

Strong CP Problem

Axion Solution

Beyond Instantons

Outlook & Conclusion

Theta Vacua - Introductory Example

System:

Classical Vacuum:

Strong CP ProblemAxion SolutionBeyond InstantonsOutlook & Conclusion••••••••••••••••••

<u>Theta Vacua - Introductory Example</u>

Classical Vacuum:

QM Vacuum:

QCD w/out quarks: $\mathscr{L} = -\frac{1}{4} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu}$

Situation is similar to previous example! But compact direction "hidden" in gluon field space

Theta Vacua - QCD

QCD w/out quarks: $\mathscr{L} = -\frac{1}{4} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu}$

Situation is similar to previous example! But compact direction "hidden" in gluon field space

instantons
= leading order field configuration
of tunneling process

superposition

Theta Vacua - QCD

QCD w/out quarks:
$$\mathscr{L} = -\frac{1}{4} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu}$$

Situation is similar to previous example! But compact direction "hidden" in gluon field space

1) different super selection sectors: $\langle \theta | \mathcal{O} | \theta' \rangle = 0$ if $\theta \neq \theta'$

2) Vacuum energy density associated with θ - vacua: $E(\theta) \sim \theta^2$

Strong CP Problem	Axion Solution	Beyond Instantons	Outlook & Conclusion	
0000				
				1 Ap. Ag≥±t

Strong CP Puzzle

Account for these tunneling field configurations in path integral

$$Z = \sum_{\Delta n} f(\Delta n) \int [DA] e^{iS[A]} \qquad \underbrace{\text{S-matrix locality}}_{\Delta n} \delta \mathscr{L}_{\theta} = \theta \frac{g^2}{32\pi^2} \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu} \text{ with } \tilde{G}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu}$$
CP violating

Strong CP Puzzle

Account for these tunneling field configurations in path integral

$$Z = \sum_{\Delta n} f(\Delta n) \int [DA] e^{iS[A]} \qquad \text{S-matrix locality} \qquad \delta \mathscr{L}_{\theta} = \theta \frac{g^2}{32\pi^2} \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu} \text{ with } \tilde{G}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu}$$

$$CP \text{ violating}$$

Is θ observable? Yes

Contributes to electric dipole moment of e.g. neutron, but we do not measure CP violation!

$$\Rightarrow \theta < 10^{-10} \text{ or so}$$

Strong CP puzzle: Why is θ so small?
Not really a problem, quantum corrections to θ
within SM are tiny (unlike e.g. Higgs mass)

Strong CP Problem	Axion Solution	Beyond Instantons	Outlook & Conclusion	K
Strong CP Proble	n			¶∆p.∆g≥±t

 $\theta \neq 0 \implies$ positive vacuum energy (positive cosmological constant; de Sitter)

Strong CP Problem	Axion Solution	Beyond Instantons	Outlook & Conclusion	$\Delta_p \cdot \Delta_g \ge \frac{1}{2} t$
Strong CP Probler	<u>n</u>			

 $\theta \neq 0 \implies$ positive vacuum energy (positive cosmological constant; de Sitter)

However: There are arguments from quantum gravity that de Sitter is inconsistent S-matrix arguments, Quantum breaking, Swampland conjecture, ...

$$\implies \theta \stackrel{!}{=} 0$$

Mechanism that achieves this is necessary!

Strong CP Problem	Axion Solution • • •	Beyond Instantons	Outlook & Conclusion	Ap. Ag > ± t
<u>ldea</u>				

If θ dynamical, then vacuum at $\theta = 0$. But how to achieve this?

Axion is the pseudo Goldstone-boson of this $U(1)_{PQ}$

 η' is the pseudo Goldstone-boson of this U(1)_A

 η' is the pseudo Goldstone-boson of this U(1)_A

However: Additional (large) explicit breaking by quark masses

$$\mathscr{L}_{\text{QCD}} \supset \text{Tr}\,\bar{q}_L M q_R$$

Vacuum: $\left\langle \frac{\eta'}{f_{\eta'}} \right\rangle \equiv \langle \theta(x) \rangle \neq 0$ reintroduces θ

If explicit breaking small then strong CP puzzle can still be solved. But for strong CP problem no other explicit breaking is allowed! Strong CP Problem

Axion Solution

Beyond Instantons

Strong CP in Topological Higher-Form Language

Topological Susceptibility: $\langle G\tilde{G}, G\tilde{G} \rangle_{q \to 0} \equiv \lim_{q \to 0} \int d^4x \, e^{iqx} \langle T[G\tilde{G}(x)G\tilde{G}(0)] \rangle = \text{const} \neq 0$

Non-zero value means that θ is physical!

Beyond Instantons

Strong CP in Topological Higher-Form Language

Topological Susceptibility: $\langle G\tilde{G}, G\tilde{G} \rangle_{q \to 0} \equiv \lim_{q \to 0} \int d^4x \, e^{iqx} \langle T[G\tilde{G}(x)G\tilde{G}(0)] \rangle = \text{const} \neq 0$

Non-zero value means that θ is physical!

Chern-Simon 3-Form:

$$\begin{split} C_{\mu\nu\rho} &= \operatorname{tr} \left[A_{[\mu}\partial_{\nu}A_{\rho]} - \frac{3}{2}A_{[\mu}A_{\nu}A_{\rho]} \right] \\ \tilde{C}^{\mu} &= \epsilon^{\mu\nu\rho\sigma}C_{\nu\rho\sigma} \end{split}$$

Chern-Simon current:

Pontryagin density:

Pontryagin index:

$$E = \partial_{\mu} \tilde{C}^{\mu} = G_{\alpha\beta} \tilde{G}^{\alpha\beta}$$
$$n = \frac{g^2}{32\pi^2} \int \tilde{C}^0(x) \ d^3x$$

Rewrite constant topological susceptibility: $\langle CC \rangle_{q \to 0} \sim \frac{1}{q^2}$ massless 3-form! Removing this pole makes θ unphysical!

Uniquely achieved in gauge invariant way by making C massive.

 $\circ \bullet$

Effective Field Theory

$$\begin{array}{ll} \underline{\text{Without Axion:}} & \mathscr{L}_{\text{eff}} = -\frac{1}{\Lambda_{\text{QCD}}^4} (F_{\mu\nu\rho\sigma})^2 + \theta \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu\rho\sigma} + \cdots \\ & = -\frac{1}{\Lambda_{\text{QCD}}^4} E^2 + \theta E + \cdots & \Longrightarrow \quad \langle E \rangle = \Lambda_{\text{QCD}}^4 \theta \end{array}$$

Solve eom: $E = \Lambda_{\text{QCD}}^4(\theta + \kappa)$ background constant field

Effective Field Theory

$$\begin{array}{ll} \underline{\text{Without Axion:}} & \mathscr{L}_{\text{eff}} = -\frac{1}{\Lambda_{\text{QCD}}^4} (F_{\mu\nu\rho\sigma})^2 + \theta \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu\rho\sigma} + \cdots \\ & = -\frac{1}{\Lambda_{\text{QCD}}^4} E^2 + \theta E + \cdots & \Longrightarrow \quad \langle E \rangle = \Lambda_{\text{QCD}}^4 \theta \end{array}$$

Solve eom: $E = \Lambda_{\text{QCD}}^4(\theta + \kappa)$ background constant field

With Axion:
$$\mathscr{L}_{eff} = -(F_{\mu\nu\rho\sigma})^2 + m^2 \left(C_{\mu\nu\rho} - \partial_{[\mu}B_{\nu\rho]}\right)^2$$

Background constant field is no longer solution of eom

Hodge-Dual:
$$\mathscr{L}_{\text{eff}} = \frac{1}{2} (\partial_{\mu} a)^2 - \frac{m^2}{2} (a - \kappa)^2$$
,

Key-point: If axion introduced as 2-form, PQ symmetry is gauged, thus protected against explicit breaking

Strong CP Problem	Axion Solution	Beyond Instantons	Outlook & Conclusion		
				Ap. Ag > 1t	
<u>Conclusion</u>					
QCD has a non-trivia	al vacuum structure	described by θ -vacua			
These contribute to t	the unobserved nED	$DM \Longrightarrow \theta < 10^{-10} \text{ or so}$			
Strong CP puzzle: W	/hy is θ so small?		> Strong CP		
Quantum Gravity arg	Quantum Gravity arguments demand $\theta = 0$				
PQ mechanism: Intro symmetry that is and	oduce non-linearly re omalous w.r.t. QCD	ealised axial U(1)	Axion		
Axion is the pseudo	Goldstone-boson of	this U(1) _{PQ}			
When introduced as	2-form PQ symmet	ry is gauged			
	Thank yo	ou for your attention!	XION CONT		

Strong	CP	Problem

Beyond Instantons

Outlook & Conclusion

Strong CP Problem	Axion Solution	Beyond Instantons	Outlook & Conclusion	
				Ap. Dg > tt
	_			

Instantons- QCD 1

$$\mathscr{L} = -\frac{1}{4}G^a_{\mu\nu}G^{a\ \mu\nu}$$

Field-Strength tensor:

Gauge Transformation:

$$\begin{aligned} G^a_{\mu\nu} &= \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu \\ A_\mu &\longrightarrow U A_\mu U^{-1} + \frac{i}{g} U \partial_\mu U^{-1} \end{aligned}$$

Vacuum:
$$A_i(x)|_{vac} = 0$$
 $A_i(x)|_{vac} = \frac{i}{g}U(x)\partial_{\mu}U(x)^{-1}$ Finite action: $\lim_{x \to \infty} U(x) = \text{const} \longrightarrow \text{space topologically equivalent to 3-sphere!}$ Mapping: $U: S^3 \longrightarrow S^3 \implies \text{winding number } n$

Mapping:

winding number $|n\rangle$