The LEGEND experiment and related research activities at MPP

Felix Hagemann November 17th 2022

The LEGEND experiment

Outline

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Neutrinoless $\beta\beta$ Decay ($0\nu\beta\beta$)

Enriched Germanium detectors

Large Experimental programs

Two neutrino $\beta\beta$ Decay ($2\nu\beta\beta$)

Electron energy E

 $\mathsf{Q}_{\beta\beta}$

 $2\nu\beta\beta$ is a nuclear decay mode where two neutrons (or two protons) β -decay simultaneously

- very rare (half-lifes $T_{1/2}$ of the order 10^{19} 10^{21} yr)
- \cdot has been observed in several isotopes, e.g.

⁴⁸Ca ⁷⁶Ge ⁸²Se ⁹⁶Zr ¹⁰⁰Mo ¹¹⁶Cd ¹³⁰Te ¹³⁶Xe ¹⁵⁰Nd

In $2\nu\beta\beta$, the released energy $\mathbf{Q}_{\beta\beta}$ is shared between the electrons and the anti-neutrinos $\Rightarrow E_{ee} < \mathbf{Q}_{\beta\beta}$

Neutrinoless $\beta\beta$ Decay ($0\nu\beta\beta$)

 $0\nu\beta\beta$ is a hypothesized double-beta decay without emission of neutrinos $\rightarrow 2\nu\beta\beta$ isotopes are candidates for $0\nu\beta\beta$

In $0\nu\beta\beta$, the released energy $\mathbf{Q}_{\beta\beta}$ is shared amongst the two electrons $\Rightarrow E_{ee} = \mathbf{Q}_{\beta\beta}$

Observing $0\nu\beta\beta$ would prove that: · lepton number is not conserved
[Schechter and Valle, PRD 25, 2951 (1981)]

- neutrinos are fundamental Majorana particles
- there is a new mass generation mechanism

If $0v\beta\beta$ is mediated by light Majorana neutrino exchange:

- the effective Majorana mass $m_{\beta\beta} = |\sum U_{ei}^2 m_i|$ can be determined from the decay rate: $\Gamma^{0\nu} \propto m_{\beta\beta}^2$
- For inverted ordering, $m_{\beta\beta}$ > 18.4 meV

Germanium

in average one electron-hole pair per 2.96 eV

E

Germanium

• electrons

p-type

Germanium Detectors

Germanium Detector Technology

[Budjas et al., JINST 4, P10007 (2009)] [GERDA, EPJC 79, 978 (2019)]

Broad energy germanium detector

olid

LEGEND: Phased Approach

LEGEND mission:

"The collaboration aims to develop a phased, ⁷⁶Ge based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results."

About 250 members, 48 institutions, 11 countries

Preconceptual Design Report: arXiv: 2107.11462

LEGEND-1000

Inverted coaxial Detector arrays with point-contact detectors copper holding structure

Enclosed in optical fiber shrouts

Liquid argon tank (64m³) Pure water tank (600m³)

Germanium detector assembly

Background Sources

Background Rejection: Active Vetos

multi-detector interactions

multi-site/surface interactions

Background Rejection: Pulse Shape Analysis

α surface events · 1.0 1.0 $\phi_0^w(\vec{r})$ 3000V 50 0.8 0.840 Normalized pulse 30 z in mm 0.6 0.6 20 10 charge signal current signal 0.2 0.2 -100.0 -200.0 40 30 20 10 0 10 20 30 40 0 200 400 600 r in mm t in ns

Pulse shape discrimination based on A/E = max. of current pulse / max. of charge pulse

Final **GERDA** Results

[GERDA, PRL 125, 252502 (2020)]

almost pure $2\nu\beta\beta$ continuum \rightarrow precision studies, new physics searches (e.g. $0\nu\beta\beta$ decay with Majoron emission) sparse single counts in the region of interest around $Q_{\beta\beta} = 2039$ keV

Final **GERDA** Results

13 events, closest event at 2.4 σ

combined unbinned maximum likelihood fit, Gaussian signal on flat background, individual efficiencies/resolution (mean FWHM of 2.6 keV)

best fit: no signal N^{0v} = 0, background index $(5.2 \pm \frac{1.6}{1.3}) \cdot 10^{-4}$ cts/(keV kg yr) \rightarrow if normalized by the energy resolution: lowest background in the field

Frequentist $T_{1/2} > 1.8 \cdot 10^{26}$ yr (median sensitivity) at 90% C.L. $\Rightarrow m_{BB} < (79 - 180)$ meV

Current and Future 0vßß Experiments using ⁷⁶Ge

	GERDA [GERDA, PRL 125, 252502 (2020)]	LEGEND-200 [LEGEND, arXiv: 1709.01980]	LEGEND-1000 [LEGEND PCDR, arXiv: 2107.11462]
Detector mass	44.2 kg	up to 200 kg	1000 kg (payloads)
Background index [cts/(keV kg yr)]	$(5.2 \pm \frac{1.6}{1.3}) \cdot 10^{-4}$	< 2 · 10 ⁻⁴	< 1 · 10 ⁻⁵
Energy resolution (FWHM)	(2.6 ± 0.2) keV	< 2.5 keV	< 2.5 keV
Experimental site	LNGS	LNGS	LNGS or SNOLAB
Discovery (90% CL)	1.8 · 10 ²⁶ yr	> 10 ²⁷ yr	> 10 ²⁸ yr
	GERDA:LEGEND:very low back-learn from theground indeximprove sens		erience of <mark>GERDA</mark> by reducing background

LEGEND: Research and Development

[LEGEND PCDR, arXiv: 2107.11462]

discrimination efficiency

Improve material selection and scintillation light read-out

Optimize cryostat design for LEGEND-1000

LEGEND, related research activities at MPP

¹³³Ba Surface Scanner

Two ¹³³Ba sources (each 1 MBq)

- \rightarrow 30.973 keV photon
- \rightarrow 80.997 keV photon
- \rightarrow 276.398 keV photon
- \rightarrow 302.853 keV photon
- \rightarrow 356.017 keV photon
- \rightarrow 383.851 keV photon

4cm tungsten collimator with ø 1.5mm borehole

Energy is deposited close to the surface via the photoelectric effect

Fully automated setup

Experimental test stands

¹³⁷Cs Compton Scanner

¹³⁷Cs source (740 MBq) \rightarrow 661.66 keV gammas

10cm tungsten collimator with ø 0.9mm borehole

Pixelated CdZnTe camera at the side of the detector

Energy is deposited in the bulk of the detector via Compton scattering \rightarrow the Compton scattered gammas are detected in the camera

Fully automated setup

[Abt et al., EPJC 82, 936 (2022)]

MAX-PLANCK-INSTITUT FÜR PHYSIK

Experimental test stands

Determination of drift mobilities

Determination of drift mobilities

$$\begin{aligned} \nabla \left(\varepsilon_r(\vec{r}) \vec{E}(\vec{r}) \right) &= \frac{\rho(\vec{r})}{\varepsilon_0} \\ \vec{v}_e(\vec{r}_e) &= \hat{\mu}_e \vec{E}(\vec{r}_e) \\ \vec{v}_h(\vec{r}_h) &= \hat{\mu}_h \vec{E}(\vec{r}_h) \end{aligned}$$

MAX-PLANCK-INSTITUT FÜR PHYSIK 26

PEN Scanning Table Setup at MPP [Efremenko et al., JINST 17, P01010 (2022)]

PEN = poly (ethylene naphthalate)

Summary

L arge

Enriched

Germanium

Experiment for

N eutrinoless ββ

Decay

Measurements on germanium detectors

Pulse shape analysis / simulations

PEN research and development

