

Max-Planck-Institut für Physik

Continuum background suppression using Deep Learning for the Belle II experiment

IMPRS Recruiting Workshop

Luciana Tanzarella | 18th July 2022

MAX PLANCK INSTITUTE FOR PHYSICS - BELLE II GROUP

Politecnico di Torino (Italy), Physics of Complex Systems - Max Planck Institute for Physics

Contents

SuperKEKB

- Belle II experiment
- Continuum background suppression
 Variables: topological discriminators
 - Deep Neural Networks
- Analysis

3

- Subleading particle approach
- 5 Results and future perspectives

6 Bibliography

SuperKEKB

- asymmetric energy e⁺e[−]
 Super B-Factory
 → 7 GeV e[−] and 4 GeV e⁺
- set a new brightness world record of (3.8 · 10³⁴cm⁻²s⁻¹) in December 2021
 → high precision measurements of rare decays and CP-violation

Figure: The SuperKEKB complex. From Akai, Furukawa, and Koiso n.d.

Belle II experiment

- general-purpose spectrometer for the next-generation B-factory experiment;
- made up by layered sub-components, specific to detect particles at a specific energy or trajectory.

Figure: The Belle II detector. From basf2 Online Textbook, Data taking n.d.

Continuum background suppression using Deep Learning for the Belle II experiment - Luciana Tanzarella

Belle II experiment

Focus

Study charmless decays of the B meson

Figure: Decay at Belle II, $\Upsilon(4S)$ resonance

Continuum background

- non resonant $e^+e^-
 ightarrow qar{q}$ events: the most common source of this combinatorial background;
- hadronisation of lighter quarks $\rightarrow u\bar{u}, \, d\bar{d}, \, s\bar{s}, \, c\bar{c}$

Focus

$b\bar{b}$ events are relevant. All the rest is background.

Variables: topological discriminators

Due to high momentum suitable for decay to light hadrons, the continuum particles are collimated (jet-like shape).

The BB event's particles are evenly distributed (spherical shape).

Figure: Event shapes: Continuum vs signal

\rightarrow binary classification task.

Continuum background suppression using Deep Learning for the Belle II experiment - Luciana Tanzarella

Variables for Continuum Suppression

Engineered Variables (E)

- Fox Wolfram Moment
- Kakuno-Super-Fox-Wolfram variables
- Thrust
- CleoCones

Detector Level Variables (DL)

- Basic Variables (momentum, azimuthal angle and polar angle and relative uncertainties)
- Track Variables (particle ID, number of CDC hits, probability of track fit)
- Cluster Variables

Vertex Variables (V)

distance (IP-decay vertex)

Deep Neural Networks

Fundamental element: the artificial neuron (perceptron)

Figure: Each input node has a weighted edge that connects it to an output node. The output is the weighted average of the inputs minus a bias factor, to which an activation function is applied. Adapted from Mehta et al. 2019

$$z^{(i)} = \mathbf{w}^{(i)} \cdot \mathbf{x} + b^{(i)} \tag{1}$$

Analysis

Hyper-parameter tuning

Set	NHL	NL	AUC
1	1	50	0.9958
2	1	100	0.9959
3	1	300	0.9958
4	3	100	0.9957
5	3	150	0.9963
6	3	50	0.9964
7	5	50	0.9969
8	5	100	0.9969
9	6	50	0.9957
10	6	100	0.9956

Table: Hyperparameter tuning for all variables

Framework: Pytorch Preprocessing:

- normalization of the inputs;
- turn NaN values into zeros;

DNN

- 5 sequential layers;
- ADAM optimizer;
- ReLU activation function;
- 50 nodes each layer;
- 512 events per mini-batch;
- run for 10 epochs.

Classifier	AUC
DNN(E+DL+V)	0.9969
DNN(E+DL)	0.9956
DNN(E)	0.9728

Table: AUC for each feature set

ROC curve for DNN

Figure: Comparison of different feature sets. The dashed vertical line represents 98% of the signal effectiveness, i.e. the minimum target to be reached.

Subleading particle approach

- Inspect the dataset and its variable sets
- starting point: 361 variables \rightarrow redundant information
- By gradually reducing the variables, performance is not adversely affected:
 - engineered variables are built on low-level variables \rightarrow redundancy (eliminates 61 variables)
 - IDs (identification probability) may lead to errors, as well as basic variables and cluster specific variables → 108 variables remains
 - do not eliminate the vertex variables due to their high discriminative power

ROC - Reduced features

Continuum background suppression using Deep Learning for the Belle II experiment - Luciana Tanzarella

Summary and future perspectives

- Data taken from MC14 and adapted to the task through steering;
- With a simple architecture, the technique of variable-space reduction has proved effective and promising
 - \rightarrow lower computational demands;
- ptimal combinations of hidden layers and neurons for each layer were obtained not to use more resources than necessary;
- Machine Learning shows great potential in pattern recognition for HEP

 develop new architectures: Graph NN, Convolutional NN, GAN (Generative adversarial network)

Bibliography

- [1] Kazunori Akai, Kazuro Furukawa, and Haruyo Koiso. "SuperKEKB collider". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 907 (). DOI: 10.1016/j.nima.2018.08.017.
- [2] basf2 Online Textbook, Data taking. https: //software.belle2.org/development/sphinx/online_book/fundamentals/02datataking.html.
- [3] Pankaj Mehta et al. "A high-bias, low-variance introduction to Machine Learning for physicists". In: Physics Reports 810 (2019). A high-bias, low-variance introduction to Machine Learning for physicists, pp. 1–124. ISSN: 0370-1573. DOI: https://doi.org/10.1016/j.physrep.2019.03.001. URL: https://www.sciencedirect.com/science/article/pii/S0370157319300766.