

Inclusive *B***-meson tagging for an** $R(D^*)$ **measurement at Belle II**

IMPRS Interview

Sofia Palacios Schweitzer LMU München

18. July 2022

A Road to New Physics

 \rightarrow Measured values in 3.3 σ tension with SM prediction

How to get a B-Meson

In the Belle II Experiment at SuperKEKB :

- Collision of electron & positron (√s=10.58 GeV) (precisely known)
- 2. Production of $\Upsilon(4S)$
- 3. Decay into B-Meson pair
- \rightarrow in 8 years : 5 \cdot 10¹⁰ B-Meson pairs

How to detect

Belle II Detector

- 1. Vertex detector
- 2. Central Drift Chamber
- 3. Particle identification detectors
- 4. EM Calorimeter inside solenoid
- 5. $K_L \& \mu$ detector

 \rightarrow Neutrinos?

What about Neutrinos?

Let's just tag it

1. Reconstruct signal side exclusively

For tag side reconstruction:

 iterating over multiple exclusive decay modes (default)

٧S

inclusively

-

- 2. Reconstruct tag side inclusively (hadronically)
 - no intermediate daughters are reconstructed

Rest of Event

Belle II exclusive tagging algorithm

Tags	Decay Modes covered	Tag Side Efficiency
Semileptonic	4.0%	2.04%
Hadronic	1.1%	0.46%
<u> </u>		[3],[4]

 \rightarrow fully inclusive promises higher tag side efficiency

BUT: Very high background levels

Rest of Event

Workflow

- 1. Reconstruction
 - a. optimize signal & tag side selection
- 2. Background Analysis
 - a. categorize background modes
 - b. build MVAs
- 3. Fit
 - a. 2D Fit in M^2_{miss} and lepton momentum
- 4. Estimate Systematic Uncertainties

1. Reconstruction

2. Background Analysis

Reconstruction Modes:

- 62% normalization mode
- 3.5% signal mode
- 2.6% continuum background
- 32% combinatorial background

2. Background Analysis

For M^2_{miss} < 1 GeV²:

Normalization Channel with purity of 82%

For $M^2_{miss} > 1 \text{ GeV}^2$:

Signal Channel with purity of 12%

2. Background Analysis

Sideband Components

Background:

- 20% D** I ν (higher excited D states) \Rightarrow D* π
- 13% D^(*) D^(*) K^(*)
- 10% D_s^(*) D^(*)

 $\hookrightarrow \tau \, \nu$

- 8.6% continuum
- 38% rest

Suppression

Idea: Build MVAs to suppress different background components

- 1. Continuum Background: Event Shape Variables
- 2. Combinatorial Background: ?

 \rightarrow Suppression not optimal yet

- unbinned maximum likelihood fit
- pdfs: kernel density estimation from MC
- 2D: M²_{miss}& lepton momentum

Fit Components:

1. normalization mode

- 2. signal mode
- 3. D** background
- 4. remaining background

- unbinned maximum likelihood fit
- pdfs: kernel density estimation from MC
- 2D: M²_{miss}& lepton momentum

Fit Components:

1. normalization mode

- 2. signal mode
- 3. D** background
- 4. remaining background

Investigate way to fix D** Background:

- Reconstruct D** in $B \rightarrow D^* \pi \mid v$
- Fit of M²_{miss} of D**
- Reconstruction efficiency
- \rightarrow Use fit result to constrain D** component in signal fit
- \rightarrow Sequential fit: 1d + 2d

Test fit to MC sample:

$$R(D^*) = \frac{n_{sig}}{n_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig}} = 0.28 \pm 0.03$$

in MC:
$$R(D^*)=0.258$$

- toy test show unbiased fit with well described uncertainties

Test fit to MC sample:

$$R(D^*) = \frac{n_{sig}}{n_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig}} = 0.28 \pm 0.03$$

in MC:
$$R(D^*)=0.258$$

- toy test show unbiased fit with well described uncertainties

What now?

Is this approach compatible with exclusive tagging?

For now **yes**, available data statistically limited (currentently ~200 fb-1)

BUT: statistical limit will be overcome eventually

To stay compatible:

- Optimize training
- Estimate systematic uncertainties

Sources

[1] https://hflav-eos.web.cern.ch/hflav-eos/semi/spring21/r_dtaunu/rdrds_2021.png

- [2] https://www.belle2.org/e21595/e21770/infoboxContent25428/BelleII3D.pdf
- [3] T.Keck, "The Full Event Interpretation for Belle II" (2014), KIT Karlsruhe
- [4] T.Keck et al. "The Full Event Interpretation" (2019), arXiv:1807.08680
- [5] https://stock.adobe.com/de/contributor/205527442/strichfiguren-de

