Measurement of the 1-jettiness Event Shape Observable in Deep-inelastic Electron-Proton Scattering

Johannes Hessler

IMPRS Recruiting Workshop

Technische Universität München, Max-Planck-Institut für Physik

Masterthesis: https://inspirehep.net/literature/2010833 H1 prelimiary report: https://www.h1.desy.de/psfiles/confpap/EPSHEP2021/H1prelim-21-032.pdf PoS EPS-HEP: https://arxiv.org/abs/2111.11364

18.7.2022

1

Neutral current deep-inelastic scattering

Neutral current deep-inelastic scattering

- Process ep
 ightarrow e'X
- Electron or positron scattering

Kinematic variables

- Virtuality of exchanged boson Q^2 $Q^2 = -q^2 = -(k - k')^2$
- Inelasticity, Bjorken-x and centre-of-mass energy

$$y = \frac{P \cdot q}{P \cdot k}$$
 $Q^2 = x_{Bj} \cdot y \cdot s$

The 1-jettiness event shape observable

1-jettiness

$$\tau_1^b = \frac{2}{Q^2} \sum_{i \in X} \min\{x P \cdot p_i, (q + x P) \cdot p_i\}$$

- Infrared safe and free of non-global logs
- \bullet Sensitive to strong coupling α_{s} and PDFs

Boost to Breit frame:

 \rightarrow DIS thrust normalised to boson axis

$$au_Q = 1 - rac{2}{Q} \sum_{i \in \mathcal{H}_C} P^{Breit}_{z,i}$$

- Normalisation with Q/2 of the event
- Only particles in the current hemisphere contribute

Equivalence follows from momentum conservation:

$$\tau_Q=\tau_1^b$$

Kang, Lee, Stewart [Phys.Rev.D 88 (2013) 054004]

H1 'Multi-purpose' DIS detector

- Asymmetric design with trackers, calorimeter, solenoid, muon-chambers, forward & backward detectors
- Particles are reconstructed using a particle flow algorithm
 - \rightarrow Combining cluster and track information without double-counting of energy

The 1-jettiness event shape observable

1-jettiness

$$\tau_1^b = \frac{2}{Q^2} \sum_{i \in X} \min\{xP \cdot p_i, (q + xP) \cdot p_i\}$$

Visualisation of the 1-jettiness with event displays

- DIS 1-jet configuration
- Most HFS particles collinear to scattered parton

$$\rightarrow$$
 Small τ_1^b

- Dijet event
- More and larger contributions to the sum over the HFS \rightarrow Large τ^b_1

DIS thrust - a 4π observable

- All particle candidates in all DIS events contribute $\left(\tau_Q = 1 \frac{2}{Q} \sum_{i \in H_C} P_{z,i}^{Breit}\right)$
- \bullet Normalised contribution to τ_Q for different ranges in polar angle ϑ and energy

- Mainly tracks and clusters in the central part of the detector contribute ($25^\circ < \vartheta < 153^\circ$)
- Mainly particles with high energy contribute (E > 1 GeV)
 - \Rightarrow Well measured particles dominate in au_{Q}

Single differential cross section

Measure τ_Q but present cross sections as a function of τ_1^b

1-jettiness cross section

$$\left(\frac{d\sigma}{d\tau_1^b}\right)_i = \frac{N_{data,i} - N_{bkgd,i}}{\Delta_i \cdot L} \cdot c_{\text{QED},i} \cdot c_{\text{unfold},i}$$

- Unfolded using bin-by-bin method cunfold
- Corrected for QED radiative effects c_{QED}
- Divide by τ_1^b -bin width Δ_i
- Integrated luminosity $L = 351 \text{ pb}^{-1}$

Comparison with MC models

- Djangoh 1.4: Colour-dipole-model
- Rapgap 3.1: ME + parton shower
- Pythia 8.3 + Dire parton shower

Comparison with parton shower models

- Peak region has strong dependence on different parton showers
- No PS model provides a fully satisfactory description
- 'Pythia default' underestimates au=1

$\gamma p \rightarrow \!\! 2 \text{ jets+X NNLO prediction form}$ NNLOJET

- NP corrections from Pythia 8.3 (sizeable)
- NNLO provides a reasonable description of fixed-order region
- NNLO improves over NLO

Triple differential cross sections

Large cross section and sizeable data

 \rightarrow Triple-diff. cross sections as a function of Q^2, y, τ

3D cross sections

- increasing Q^2
 - \rightarrow Peak moves to lower τ
 - \rightarrow Tail region lowers
- Increasing y

ightarrow au = 1 becomes enhanced

Triple differential cross sections

Classical event shapes

- Measured at HERA-I by H1 and ZEUS
- No public measurement in HERA-II

Definitions of observables

Only particles in the current hemisphere contribute

 \rightarrow Introduce cut to ensure infrared safety $\textit{E}_{c} = \sum_{h}\textit{E}_{h} > \textit{Q}/10$

- A first measurement of the 1-jettiness event shape observable in NC DIS was presented
- 1-jettiness is equivalent to DIS thrust normalised with Q/2
 - \rightarrow Defined for every NC DIS event
- Reasonable description of the data by various models
- New predictions to be confronted with the data (N³LL, SHERPA 3, ...)

Reichelt, Phenomenology of Jet Angularities at NLO+NLL' accuracy, Jet physics from LHC/RHIC to EIC, https://indico.bnl.gov/event/14375/contributions/65419/

Summary

My contributions to the analysis

- Wrote large parts of the analysis code (cross checks, QED corrections, unfolding, plotting)
- Studied different definition of the observable and different reconstruction methods
- Determined systematic uncertainties
- Achieved a 'preliminary' approval from the H1 collaboration
- Presented the results at DPG and EPSHEP21 conference

Code is now also used by other collaborators

Reichelt, Phenomenology of Jet Angularities at NLO+NLL' accuracy, Jet physics from LHC/RHIC to EIC, https://indico.bnl.gov/event/14375/contributions/65419/

Backup

Sensitivity of $\tau_1^{\textit{b}}$ to $\alpha_{\textit{s}}$

Pythia+Vincia α_s variations (± 5%)

- Plot shows Pythia 8.3 + Vincia prediction for τ_1^b on particle level \rightarrow High sensitivity in tail region
 - \rightarrow No sensitivity in peak region (Born level kinematics)

- Systematic uncertainties as a function of τ_1^b
- Dominated by 2.7% luminosity uncertainty

Purity distribution

Purity defined as N_{stay} / N_{rec}

- *N_{rec}*: Events on detector level in one bin
- *N_{stay}*: Events that are reconstructed in the same bin they were generated

Purity

- Rapgap and Djangoh behave similarly
- Flat distribution in all *y*-*Q*² bins
- Purities > 30% in most bins

From different binnings and 2D migration matrices

- Purity mainly limited by bin-to-bin resolution effects
- Not an effect from limited detector acceptance

Correct for electron QED radiative effects

- Real emissions of photons (a,b)
- Vertex corrections (c)

- QED processes simulated with HERACLES
- Size of corrections depends on reconstruction method
- \rightarrow Corrections around 10%
- \rightarrow Large effect in the first bin

Triple differential cross sections

NNLO pQCD ($ep \rightarrow 2 \text{ jets}+X$)

- Reasonable description in entire phase space
- Improved description with increasing Q^2
- Small scale uncertainties
- \rightarrow Altogether: NNLO improves over NLO but NP corrections are sizeable

