

Measurement of the Charge Ratio of Cosmic-Ray Muons in Super-Kamiokande

Hussain Kitagawa

Okayama University

Email: kitagawa0913@s.okayama-u.ac.jp

IMPRS Recruiting Workshop @ Munich, Germany

July 18th 2022

Contents

- Cosmic-ray muons
- Muon charge ratio
- Super-Kamiokande (SK)
- $\mu e \operatorname{decay}$
- Muon charge ratio in SK-IVSummary

Cosmic–ray muons

Primary cosmic-rays interact with atmospheric nuclei and produce secondaries

IMPRS Recruiting Workshop

Hussain Kitagawa

Muon charge ratio

Physics motivation

The precise estimation of hadron productions and the atmospheric neutrino flux is required

 \rightarrow uncertainties of μ , π , K fluxes and their charge ratio

<u>Muon charge ratio $R(\mu^+/\mu^-)$ </u>

- π/K production dependency
- *K* contribution to TeV energy region $p + air \rightarrow \Lambda^0 + K^+ + anything$

Further measurement in the TeV region for the precise $R(\mu^+/\mu^-)$ prediction

 \rightarrow can be measured in **Super-Kamiokande**

Super-Kamiokande (SK)

Super-Kamiokande detector

- Water Cherenkov detector
 - \rightarrow located 1,000 m underground in Kamioka mine (Japan)
- 50 kton water tank

 → Inner Detector (ID),
 Outer Detector (OD)
- PMTs installed in ID and OD
 → event reconstruction

 \rightarrow measure the charge ratio using $\mu-e$ decay

$\mu - e$ decay event

Muon-decay electron signal

 $\mu^{\pm} \rightarrow e^{\pm} + \nu_{e} (\overline{\nu}_{e}) + \overline{\nu}_{\mu} (\nu_{\mu})$ (Lifetime: $\tau_{\mu} \sim 2.2 \ \mu sec$)

- Number of hit PMTs $\rightarrow \mu$ (e) emit a lot (few) of Cherenkov photons \rightarrow energy reconstruction for e
- Timing information of hit PMTs \rightarrow direction & vertex reconstruction
- Observe 2,000 events/day

IMPRS Recruiting Workshop

Hussain Kitagawa

$\mu - e$ decay search

Selection criteria for $\mu - e$ candidates

1. $\mu - e$ decay time difference : 1.3 μ sec < *t* \rightarrow remove mis-identify hit PMTs from the muon longer tail hits in $t \leq 1.3 \mu$ sec

$\mu - e$ decay search

<u>Selection criteria for $\mu - e$ candidates</u>

- 1. μe decay time difference : 1.3 μ sec < t
- 2. Reduction of low energy backgrounds : 8 MeV < $E_{e^{\pm}}$
- 3. Distance between μe position : 300 cm < *Distance*

Muon lifetime in medium

μ^- capture in nuclei

 μ^- lifetime becomes shorter in the medium due to the nuclear capture

IMPRS Recruiting Workshop

Hussain Kitagawa

Observed μ^{\pm} events

Decay curve of stopping muon

Muon charge ratio in SK-IV

Yearly variation of the charge ratio in SK-IV (2008 \sim 2018) Averaged charge ratio in SK-IV $\Rightarrow R(\mu^+/\mu^-) = 1.42 \pm 0.02$

 π/K production dominates in the energy region up to TeV \rightarrow can improve π/K ratio prediction in the TeV scale

Hussain Kitagawa

Summary

Investigate hadronic interaction in atmosphere and prediction for atmospheric neutrino flux:

 $\rightarrow R(\mu^+/\mu^-)$ measurement is required

- Measured $R(\mu^+/\mu^-)$ using SK detector:
 - \rightarrow search for μe decay candidates
 - \rightarrow counting total N_{\pm} considering lifetime $\tau_{\mu^{\pm}}$ difference in water
- Result of SK-IV (10 years) averaged data: $\rightarrow R(\mu^+/\mu^-) = 1.42 \pm 0.02 \ (\sim 1.3 \text{ TeV region})$ $\rightarrow K$ production enhance, $R(\mu^+/\mu^-) \approx 1.27 \ (10 \sim 300 \text{ GeV})$

Improvement of muon charge ratio prediction: \rightarrow can estimate π/K production ratio in TeV scale

Back up

IMPRS Recruiting Workshop

Hussain Kitagawa

Research activities

CERN, Switzerland (Apr. 2022 – Present)

Measurement of the Hadron Production for T2K Experiment at NA61/SHINE CERN

Okayama University, Japan (Apr. 2019 – Mar. 2022)

Master Thesis: Measurement of the Charge Ratio of Cosmic-Ray Muons in Super-Kamiokande

CERN, Switzerland (Online) (Jun. 2020 – Aug. 2021)

1) Searching for ALPs in Light-by-light Scattering in pp Collisions Using AFP Proton Tagging with the ATLAS Detector (<u>DPG Spring Meeting</u>)

2) Study of Jets for an Axion-Like Particle Search with the ATLAS Detector (Report)

3) Optimization of Diphoton Acoplanarity Selection for an Axion-Like Particle Search with the ATLAS Detector (<u>Report</u>)

Muon-decay

(1) Single muon enter and stop inside the tank

(2) Decay electrons are generated at around 2.2 µsec

Data contains background events

Identify from the typical characteristics of $\mu - e$ decay events

IMPRS Recruiting Workshop

Hussain Kitagawa

Muon zenith angle dependency¹⁶

Zenith angle distribution of stopping muons

upward-going muon induced from neutrino interaction ($\theta > 90^{\circ}$)

Upward-going direction region ($\cos \theta < 0$) are rejected

IMPRS Recruiting Workshop

Hussain Kitagawa

Analysis flow chart

Time window of trigger

<u>Time difference between μ-e decay events</u>

18

Fitting results of decay curve in SK-IV¹⁹

IMPRS Recruiting Workshop

Hussain Kitagawa

Stopping muon rate in SK-IV ²⁰

IMPRS Recruiting Workshop

Hussain Kitagawa

Muon simulation with MUSIC²¹

- Optimize the selection criteria for the data collection of muon decay events
 → consider muon flux at SK in MC
- **MUSIC**(Muon Simulation Code)^[*] Three-dimensional simulation of the muon propagation
 - \rightarrow calculate average muon energy, flux, and rate

IMPRS Recruiting Workshop

Hussain Kitagawa

Classification of muon events ²²

4 types of cosmic-ray muon events

Signal events

 Stopping muon events stopping inside the ID

IMPRS Recruiting Workshop

Hussain Kitagawa

Cosmic-rays energy flux

IMPRS Recruiting Workshop

N_+, N_- dependency on fitting range ²⁴

- Change the upper fitting range 3 $\mu sec \sim$ 30 μsec (3 μsec step) and check the validity: N_{\pm} , $\chi^2/{\rm dof}$
- Fitting method w/ and w/o loglikelihood

IMPRS Recruiting Workshop

Hussain Kitagawa

Muon simulation

Generate $E \leq 20$ GeV stopping muons according to the MUSIC flux at SK

Time window of trigger

 \rightarrow Time interval between $\mu - e$ should be 1.3 μ sec $\leq t$

IMPRS Recruiting Workshop

Hussain Kitagawa

Muon lifetime in medium

 $\begin{aligned} \tau_{total} &: \text{ Lifetime of } \mu^{-} \text{ in medium (observed)} \\ \tau_{decay} &: \text{ Free decay time of } \mu^{-} \text{ (in vacuum)} \\ \tau_{capture} &: \text{ Captured time of } \mu^{-} \text{ in medium (depends on the charge of the nucleus)} \\ \Lambda_{total} \left[s^{-1} \right] &= \frac{1}{\tau_{capture}} = \frac{1}{\tau_{total}} - \frac{1}{\tau_{decay}} = \frac{1}{\tau_{\mu^{-}}} - \frac{1}{\tau_{+}} \end{aligned}$

Particle	τ _{decay}	$ au_{total}$	$ au_{capture}$	Λ _C
μ^-	2.197 µsec	1.795 µsec	9.809 µsec	0.184

(Phys.Rev.C.35, 2212(1987))

Cherenkov radiation

Cherenkov light is emitted by the charged particles moving faster than the speed of light in a medium

$$v > \frac{c}{n}$$

c: speed of light in vacuum n: refractive index of the medium c/n: speed of light in medium

Cherenkov light is emitted in a conical shape at an angle θ_c :

$$\cos\theta_C = \frac{1}{n\beta}$$

 $n \cong 1.33$ (in pure water) and particle velocity close to $c \ (\beta \sim 1)$

 \rightarrow Cherenkov angle $\theta_C \cong 42^{\circ}$

28

Muon charge ratio: π/K model²⁹

1. Consider only π/K meson production

2. Postulates energy independent ratio:

$$r_{\pi} = \frac{\pi^+}{\pi^-} \left(= \frac{f_{\pi}}{1 - f_{\pi}}\right), \ r_K = \frac{K^+}{K^-} \left(= \frac{f_K}{1 - f_K}\right)$$

3. Contributions from charm particle are ignored (below 10 TeV)

Hussain Kitagawa

Atmospheric neutrino flux

Physics motivation

The precise estimation of the absolute atmospheric flux is highly required \rightarrow uncertainty of its flux above 10 GeV is limited due to small statistics and the uncertainties of μ , π , K fluxes and their charge ratio

\rightarrow Directly reflects the neutrino/anti-neutrino ratio

IMPRS Recruiting Workshop

Hussain Kitagawa

Systematic uncertainties

Muon charge ratio in SK-IV data (2971.1 days)

 \rightarrow Statistical and fitting errors on number of events, N_+ : 0.9%, N_- : 2.2%

Systematic uncertainty is not considered

Systematic uncertainties on (N_+, N_-)

Candidates of systematic uncertainties			
(1)	Timing resolution		
(2)	Contamination of de-excitation γ -rays from exited $^{16}N^*$		

Estimation of systematic uncertainties

32

Uncertainties on timing resolution³³

Compare the time difference between Δt_{True} and Δt_{Rec} in simulation \rightarrow consider the uncertainties around Δt_{Rec} and count the variation of *N*

Uncertainties on number of events 0.03%

 \rightarrow total uncertainties on muon charge ratio <u>0.04%</u>

IMPRS Recruiting Workshop

Measurement of the polarization

Method

Measure the angular correlation between the direction of the stopped muons and the decay electrons

$$\frac{dN}{d(\cos\theta)} \propto (1 - 2x_0^2 + x_0^4) - \left(\frac{1}{3} + \frac{2x_0^3}{3} - x_0^4\right) P_{ob} \cos\theta \qquad (*x_0 \approx E/52.8)$$

M. Yamada et al. Phys. Rev. D 44, 617 (1991)

34

IMPRS Recruiting Workshop

Hussain Kitagawa

Muon spin polarization

Tow-body decay

 π^{\pm} (spin 0) satisfy the spin conservation law before and after tow-body decay ν_{μ} spin is fixed to the opposite direction of the traveling direction

 μ^+ spin direction is opposite to the momentum direction due to the law of angular momentum (center-of-mass system)

 \rightarrow Fully polarized $P_{\mu} = 1$

35

Muon spin polarization

Cosmic-ray energy spectrum (power law) $\rightarrow \mu^+$ with upward spin are more likely to be observed

IMPRS Recruiting Workshop

Hussain Kitagawa

Angular distribution of decay electrons

Angular distribution of decay electrons correspond to the spin direction of muons S_{μ}

 \rightarrow Electrons are more likely to be distributed around the muon spin S_{μ} direction

IMPRS Recruiting Workshop

Hussain Kitagawa

kitagawa0913@s.okayama-u.ac.jp

37