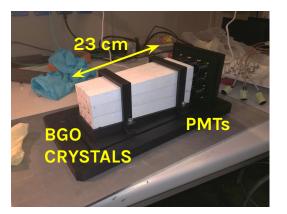
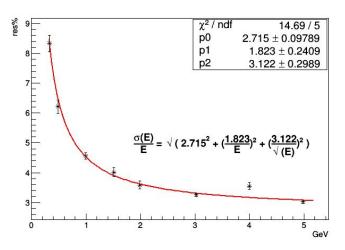
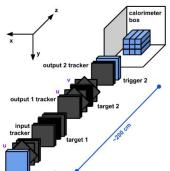


Personal research experience


Federico Ronchetti Università degli Studi dell'Insubria IMPRS PhD position interview July 18/19, 2022

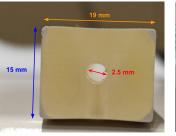

Summary

- Bachelor degree and bachelor thesis work
- Master degree and master thesis work
- Laboratory work
- Beam test activities
- Laboratory tutoring

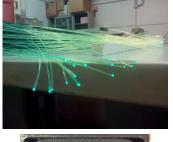

Bachelor degree in Physics (2019)

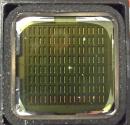
Thesis: Characterization of a BGO calorimeter with electron and muon beams

- Original work → test of the BGO calorimeter (GENNI) at low energies
 - Tutor: Prof. Michela Prest
 - 9 crystals from L3 (INFN Frascati) + 9 PMT Photonis XP1912
 - Beam test at T9 PS beamline
- GENNI used at the M2 SPS beamline → Feasability test of the MUonE experiment
 - Thesis, Soldani: "MUonE: a high-energy scattering experiment to study the muon g-2"
 - G. Abbiendi et al., "A study of muon-electron elastic scattering in a test beam", Journal of Instrumentation, vol. 16, no. 06, p. P06005, 2021



Thesis: The new readout system of the ASACUSA scintillating tracker Tutor: Prof. Michela Prest.


ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) antimatter experiment at **AD/ELENA** facility


 \rightarrow Hyperfine spectroscopy of the **antihydrogen**

The **DANTE** detector

Scintillating bars by FNAL

- Length: 96 cm, section: 1.5 x 1.9 cm²
- Coating: TiO₂

WLS Fibers Kuraray Y-11

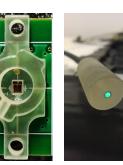
- Diameter: 1 mm ►
- Attenuation length: > 3.5 m ►
- E30 epoxy glue

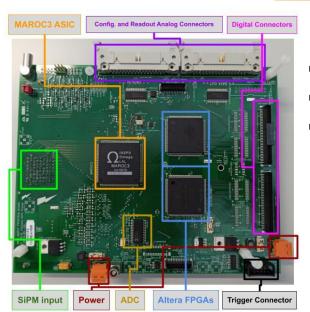
2008/2011 versions

The fibers were read out by ► Hamamatsu multi-anode PMTs

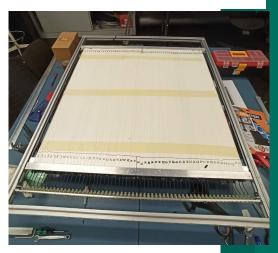
detector

2021 Upgrade to Silicon **PhotoMultipliers**


Thesis: The new readout system of the ASACUSA scintillating tracker


AdvanSiD ASD-RGB1S-P

SiPM active area: 1 x 1 mm² Cell dimension: 40 µm N cells: 625 Quenching resistance: 550 kΩ Breakdown voltage @ 25 °C: 28 V

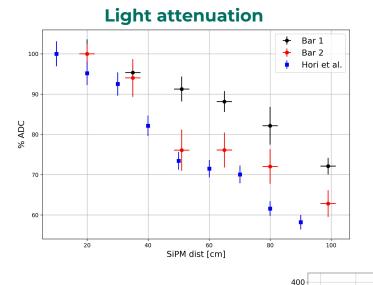


Front End electronics:

- Dual-stage amplifier on the SiPM FEB
- MAROC3 ASIC by Omega (LAL)
- 64 pre-amplified channels:
 - Analog part: slow shaper + ⊳ Sample&Hold and 5 MHz multiplexed output to the ADC
 - Digital part: 2 fast shaper + \triangleright discriminator

First plane upgraded!

Thesis: The new readout system of the ASACUSA scintillating tracker


350

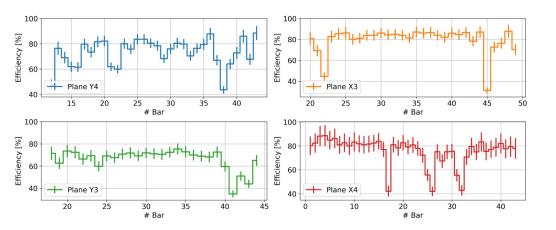
150

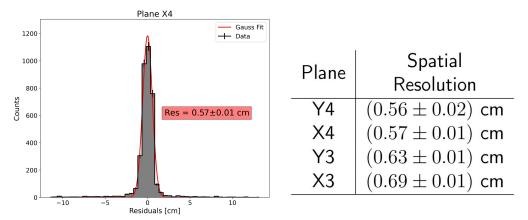

100

29.5

30.0

SiPM characterization

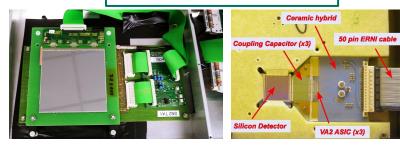



Data analysis in Python

 → numpy, matplotlib,
 scipy and Imfit

104

Thesis: The new readout system of the ASACUSA scintillating tracker


- Planes efficiency bar per bar
 - ROC curve technique for
 best threshold
 determination
- ▶ Residuals method → spatial resolution measurement

Laboratory work

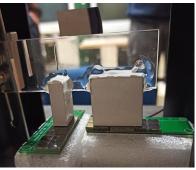
Design, building and characterization of particle detectors

Silicon microstrip trackers

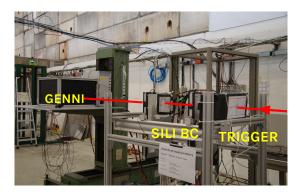
Active photon converter & triggers

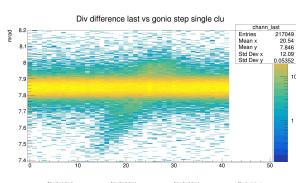
Cosmic rays detectors

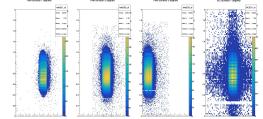
 \rightarrow L. Bomben et al., "A portable cosmic ray detector for school education," Journal of Instrumentation, vol. 16, p. P12008, dec 2021


Electromagnetic calorimeters

Beam test activities


CERN SPS and PS extracted beamlines

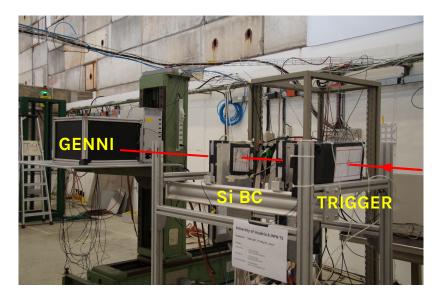

- PS T9 beamline: detector tests (Silicon BeamChambers, Calorimeters, Triggers)
- ► SPS beamlines:
 - \triangleright H2 \rightarrow STORM, KLEVER
 - ${}^{\triangleright} \qquad \textbf{H8} \rightarrow \text{SELDOM}$
 - \rightarrow tests of oriented crystals

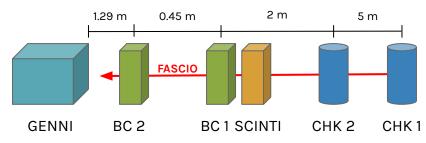


Laboratory tutoring and Physics communication

- Bachelor degree laboratories: Laboratory of Modern Physics, Laboratory of Nuclear and Subnuclear Physics
- Opendays
- High school activities
- High school seminars
- 2 Bachelor thesis **co-tutor**

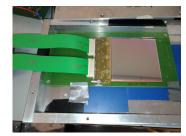
Particles, accelerators and detectors, Federico Ronchetti for high schools



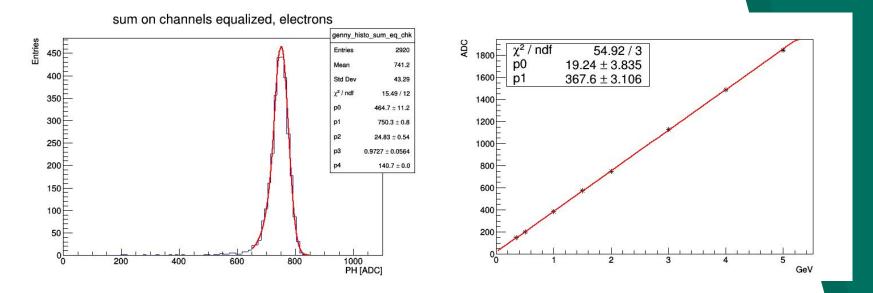

Thank you!

Backup slides

Experimental setup at T9 (Bachelor Thesis)

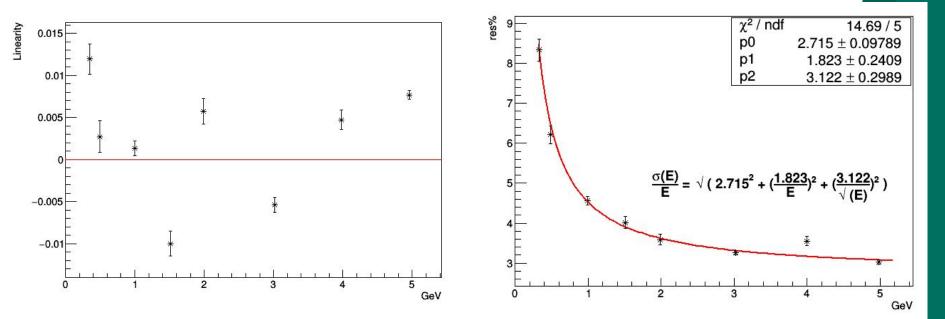

 $2 \, \mathrm{CO}_2$ Cherenkov

Plastic scintillator 10 x 10 cm²


2 Beam Chambers xy AGILE 9.5 x 9.5 x 0.041 cm³ Spatial resolution ~ 35 μm Pitch 242 μm

Calorimeter GENNI + digitizer PH/Time

Bachelor Thesis Calibration


CrystalBall Function

$$f(x,\alpha,n,\bar{x},\sigma) = N \begin{cases} \exp\left(-\frac{(x-\bar{x})^2}{2\sigma^2}\right) & \frac{(x-\bar{x})^2}{2\sigma^2} > -\alpha \\ A\left(B - \frac{x-\bar{x}}{\sigma}\right)^n & \frac{(x-\bar{x})^2}{2\sigma^2} \le -\alpha \end{cases}$$

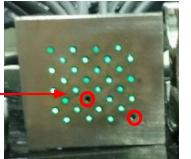
Bachelor Thesis

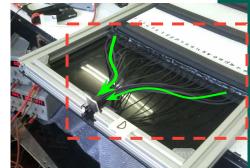
Linearity and energy resolution

- Measurement of the response linearity and of the energy resolution with electrons in the 0.250-5 GeV energy range
- Data analysis with fortran/PAW and C++/ROOT

Why the detector upgrade?

- Hamamatsu MAPMT H7546-B \rightarrow sensitive to the magnetic field
- High voltage supply (HV)
- Fragile mechanics → the efficiency got worse during the years


Upgrade with new light sensors


Silicon PhotoMultipliers

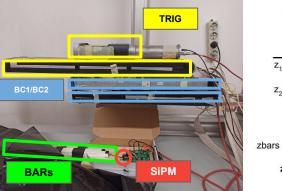
- Insensitive to the magnetic field
- ► No HV supply
- Compact devices and easier coupling with the fibers

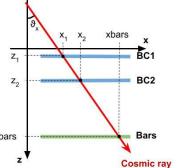
BUT

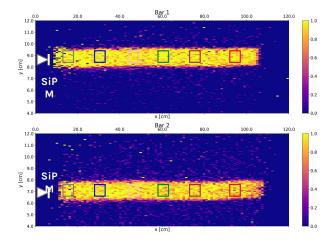

- Response temperature dependance
- Dark noise

AdvanSiD ASD-RGB1S-P

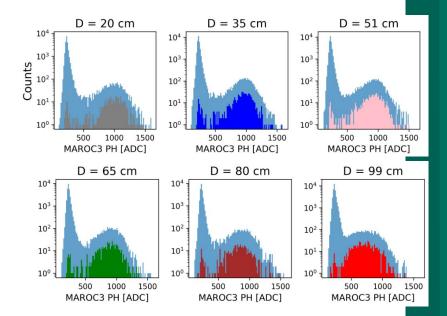
SiPM active area: 1 x 1 mm² Cell dimension: 40 μm N cells: 625 Quenching resistance: 550 kΩ Breakdown voltage @ 25 °C: 28 V

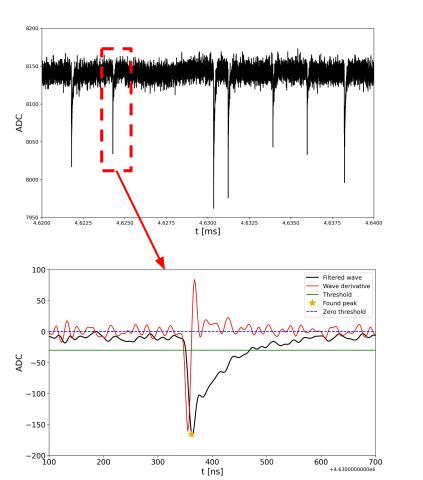





Characterization to control the SNR

Light attenuation along the bars

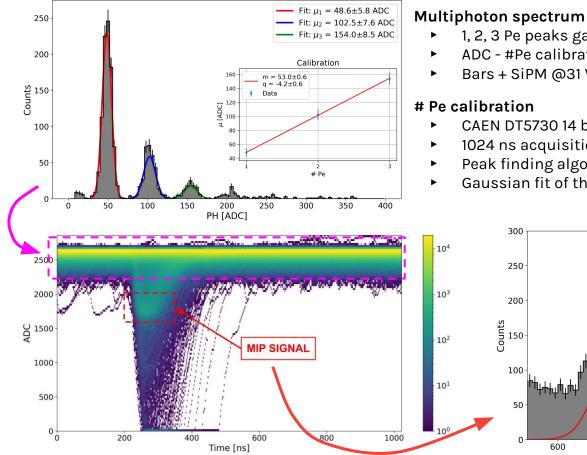

Experimental setup


- Trigger scintillators
- Silicon microstrips (AGILE detectors) for the cosmic rays tracking (*σ*~35 μm)
- 2 test SiPM (FBK 400) + MAROC3

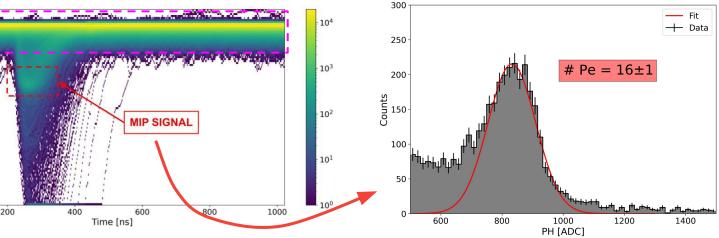
lalla

SiPM dark counts: peak finding algorithm

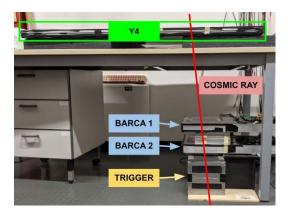
10 ms dark waveform @26 °C and different biases, acquired by a CAEN DT5730 14 bit digitizer @500 MS/s

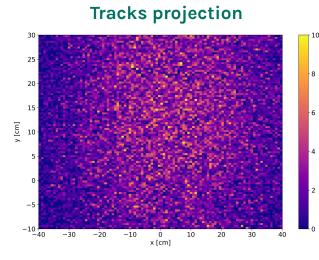

Low-pass filter and signal derivative

If the derivative is above the given threshold \rightarrow subsequent cross from 0

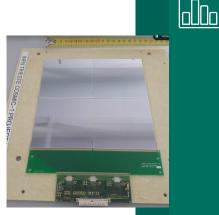

Derivative integration ↓ Peak amplitude

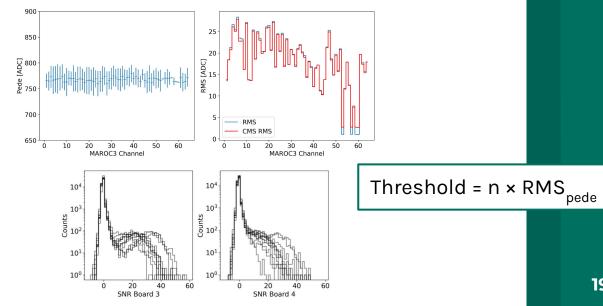
Time between subsequent peaks

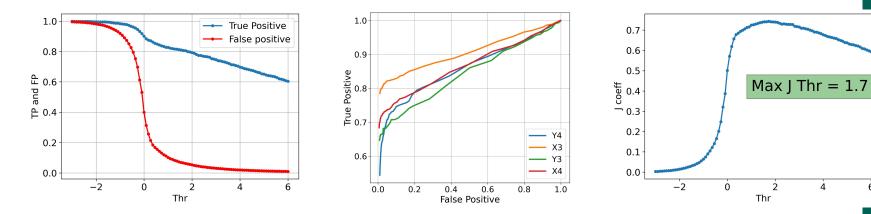

Photoelectrons per MIP

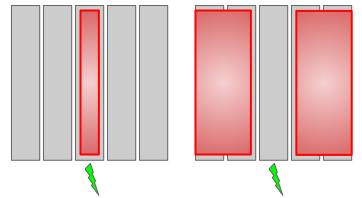


- 1, 2, 3 Pe peaks gaussian fit
- ADC #Pe calibration
- Bars + SiPM @31 V
- CAEN DT5730 14 bit digitizer @500 MS/s
- 1024 ns acquisition window
- Peak finding algorithm
- Gaussian fit of the MIP and calibration

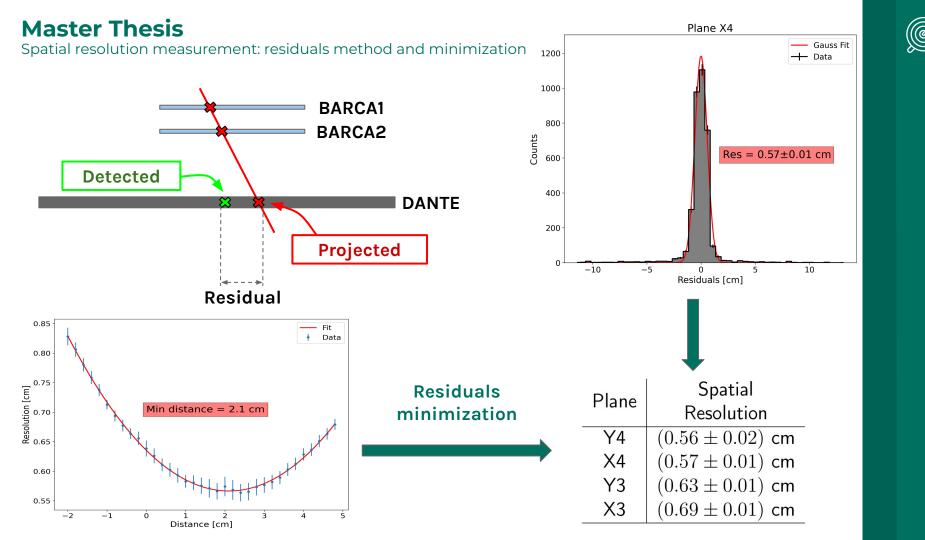

Master Thesis Bars efficiency measurement




- **4 DANTE modules** ►
- 2 trigger scintillators ►
- 4 silicon microstrip trackers (Barca1 e Barca2), 18 ► x 18 cm², 410 μ m thick and 60 μ m resolution



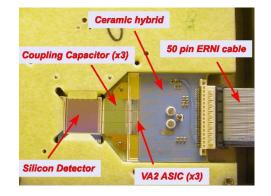
Bars efficiency measurement: ROC method for the best threshold


True Positives (TP) False Positives (FP)

- True Positives and False Positives estimate
- ROC curves for every modules
- Youden coefficient J estimate \rightarrow distance ► between the ROC curve and the 1st quadrant bisector
- Maximum J calculation ►

lalla

6



The INSULAB silicon detectors

Beam Telescopes (Tele) and Beam Chambers (BC)

- single side AGILE spare sensors → 2 layers per module with different vistas
- large active area: ~9.29×9.29cm²
- 384 channels per side with physical pitch 121µm and readout pitch 242µm → spatial resolution is ~30µm
- thickness is 410µm per layer → 820µm per module
- same robustness (direct bonding, ASICs and sensor on the same fiberglass board) and low voltage requirement as the single side telescope modules

- <u>double side CSE</u>M sensors
- **1.92cm×1.92cm**×300µm → **low material budget**
- 384 channels per side physical pitch is 25μm on junction side (½ floating) and 50μm on ohmic side → high spatial resolution: Jside 5.6 μm & Oside 11.6 μm
- full depletion in (36,54)V → low voltage requirement, along with the ±5V levels for the electronic chain

Interesting bibliography:

- Selmi, Alessia (2018). COSTRUZIONE E TEST DI UN RIVELATORE PORTATILE PER RAGGI COSMICI. Bachelor Degree in Physics. 10.13140/RG.2.2.23546.62404.
- L. Bomben et al., "A portable cosmic ray detector for school education," Journal of Instrumentation, vol. 16, p. P12008, dec 2021.
- S. Carsi, Qualification of a shashlik calorimeter Pb/Scintillator, Bachelor Degree in Physics, 2021, <u>https://scarsi.web.cern.ch/Personale/tesiLT/thesis.pdf</u>
- F. Ronchetti, The new readout system of the ASACUSA scintillating tracker, Master Degree in Physics, 2022, <u>The new readout system of the ASACUSA scintillating tracker CERN Document Server</u>
- Cosmic rays activities, Laboratory of Nuclear and Subnuclear Physics, Bachelor Degree in Physics, Università degli Studi dell'Insubria <u>https://www.uninsubria.it/notizie/scalare-una-montagna-rivelare-raggi-cosmici-all%E2%80%99ins</u> <u>ubria-si-pu%C3%B2</u>
- G. Lezzani, Innovative Cherenkov detector for Physics didactics, 2021, Bachelor Degree in Physics, <u>Tesi_GiuliaLezzani_triennale.pdf</u>