Universal Extra Dimensions at a Muon Collider

D Greenwald

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

November 19, 2010 IMPRS Colloquium, LMU, Munich

Outline

- Why build a muon collider?
- \bullet Physics goals of a μC
- What is a muon collider?
- Universal Extra Dimensions
- Kaluza-Klein Excitations
- UED at a Muon Collider

Muon Collider

Universal Extra Dimensions UED at a Muon Collider Why Build A Muon Collider? Physics Goals Collider Scheme R&D Challenges

Why build a muon collider?

In comparison to current and planned ee, pp colliders:

D Greenwald

Monday, November 22, 2010

Muon Collider

Universal Extra Dimensions UED at a Muon Collider Why Build A Muon Collider? Physics Potential Collider Scheme R&D Challenges

Physics Potential

100 - 500 GeV CoM

Higgs Factory: resonant mass scan (MeV res) MSSM vs SM higgs (A/H) Higgs doublet - CPV

Z Factory

threshold scans for pair production with well-known beam energy: W⁺W⁻, ttbar, Zh light SUSY particles

3 - 4 TeV CoM

 s-channel resonant-production of new particles:
 pair production of new particles

 Z', Extra Dimensions
 t-channel resonant production

 heavy SUSY particles
 t-channel resonant production

 virtual effects on SM processes
 strong scattering of weak bosons

 and...
 and...

 front end muon physics:
 μp collider:

 μ → eY, μ → e, g-2
 higher Q² reach than ep

Muon Collider

Universal Extra Dimensions UED at a Muon Collider Why Build A Muon Collider? Physics Potential Collider Scheme R&D Challenges

Collider Scheme

Multi-MW multi-GeV proton driver bombards target to produce pions that are captured by strong magnetic field and decay to muons.

Example parameter set for 3 TeV CoM energy:muons/bunch 2×10^{12} Luminosity $7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ $\epsilon_{6D,N}$ $2 \times 10^{-10} (\pi \text{m})^3$

Muon Collider

Universal Extra Dimensions UED at a Muon Collider Why Build A Muon Collider? Physics Potential Collider Scheme R&D Challenges

Muon Collider Detector Design

<u>High power proton driver</u>: FermiLab Project X

<u>Pion production target</u>: MERIT experiment, CERN, 2007

<u>Muon cooling</u>: ionization cooling (MICE, RAL), frictional cooling (FCD, MPP)

Detector design:

Backgrounds near interaction point from muon decay, beam halo, and other sources need to be shielded against

→ Tungsten cone extending out from IP along beam pipe

Cone angle is not yet fixed in stone

frictional cooling can provide high luminosity with fewer µ/bunch, reducing background → reducing cone angle

Concept New Particles Decay Spectrum

Universal Extra Dimensions

Extra dimensions (Kaluza Klein theories) can address hierarchy problem (gauge coupling unification, lowering of Planck scale)

KK theories come in different flavors:

which fields propagate in the extra dimensions what the extra dimensions look like

examples:

Large Extra Dimensions: only gravity accesses the extra (flat) dimensions (ADD, hep-ph/9803315) Warped extra dimensions: nonflat metric (RS, hep-ph/9905221) Universal Extra Dimensions: flat dimensions accessible by all SM fields (Appelquist, et al., hep-ph/0012100)

One UED: add to the 4D \mathbf{x} a compact dimension y (S₁/Z₂ orbifold):

Concept New Particles Decay Spectrum

Kaluza-Klein Excitations

Energy in 5D: $E^2 = \mathbf{p}^2 + m_0^2 + p_5^2$ fields excited in integral modes in y: $p_5^2 \rightarrow m_n^2 = n^2/R^2$ towers of Kaluza Klein states for each SM particle at $m_n = R^{-1}$

At tree level this is highly degenerate: $m \approx n/R$ for all KK_n particles, since $m_n \gg m_0$ but with radiative corrections (Cheng et al., hep-ph/0204342) the degeneracy is broken:

Compactification breaks KK-excitation number conservation to KK-Parity = $(-1)^n$ \rightarrow Limits on R loose: $R^{-1} \ge 250$ GeV

Concept New Particles Decay Spectrum

KK Decay + stable LKP

KK₁ decay modes (Cheng et al., hep-ph/0205314)

 Υ_1 (B₁) is the Lightest KK₁ Particle (LKP) and therefore (by KK parity conservation) stable \rightarrow DM candidate.

Collider Phenomenology Discoverability + R Measurement UED vs SUSY

UED signal SM Background

Lepton Collider Phenomenology of UED

KK-Parity conservation means KK1 particles created in pairs

 KK_1 pairs decay down to SM particles and $\Upsilon_1{}^\prime s$ e.g.:

$$\mu^+ \mu^- \rightarrow \mu_1^+ \mu_1^- \rightarrow \mu^+ \mu^- \Upsilon_1 \Upsilon_1$$

The Υ_1 's escape the detector undetected, so that one sees a dimuonic final state with large missing energy

Investigate dependence of discovery potential and R-measurement resolution on angle of detector shielding.

All event generation handled by CompHEP with UED implementation of Datta et al. (hep-ph/1002.4624)

Collider Phenomenology Discoverability + R Measurement UED vs SUSY

UED signal SM Background

$\mu^+ \mu^- \rightarrow \mu_1^+ \mu_1^- \rightarrow \mu^+ \mu^- + Missing Energy$

The muons have the usual flat distribution from a boosted two-body decay:

UED signal is dimuonic final state with E_{μ} < 80 GeV, P_{T} < 80 GeV

Collider Phenomenology Discoverability + R Measurement UED vs SUSY

UED signal
<u>SM</u> Background

SM Background

Dimuonic final states with large missing energy: $\mu^+ \mu^- \rightarrow \mu^+ \mu^- + 2\nu$, $\mu^+ \mu^- + 4\nu$, etc... (thousands of Feynman diagrams)

Restricting to E_{μ} < 80 GeV, E_{T} < 80 GeV nearly brings the number of diagrams down to a calculable amount.

In an attempt to perform a nearly-cutless analysis, the following two cuts were made:

$\theta_{\mu} > 4^{\circ}$

cuts out 4v diagrams involving W pair production no real impact since later assume $\theta_{\mu} > 9^{\circ}$ due to detector construction

```
M<sub>µµ</sub> > 5 GeV
cuts out Y-mediated µ<sup>+</sup> µ<sup>-</sup> production from ISR
percent level reduction of UED cross section
```

The cuts reduce calculations to a smaller set of $\mu^+ \mu^- \rightarrow \mu^+ \mu^- + 2\nu$ only diagrams

Collider Phenomenology Discoverability + R Measurement UED vs SUSY MC Analysis First Results

Cross Section Comparison

 $\sigma_{SM} \approx 11 \text{ fb} \text{ (after } E_{\mu}, P_{T}, M_{\mu\mu}, \theta \text{ cuts)}$

The cross section for the $\mu\mu$ + missing energy final state is orders of magnitude larger for UED with with large R.

The discoverability of UED is therefore high without the need to do a binned analysis at large R.

At small R, UED will cause only small deviation from SM, necessitating a binned analysis.

Collider Phenomenology Discoverability + R Measurement UED vs SUSY MC Analysis First Results

MC Analysis

Probability $R = R_J$ given data set D_K , generated at Luminosity L (and $R=R_K$)

P(R|D) is calculated by binning D in 4D-Histogram (E_{\pm}, θ_{\pm}) and comparing to binned σ from MC for R, with Poisson stat. (n_i, σ_i = number of events in D, xs for UED[R] in bin i)

for the computer to handle the very small numbers, calculations are done handling ln(P)

For R-resolution calc: only likelihood (numerator) is needed furthermore, D-dependent R-independent pedestal (In n_i!) is discarded

$$P(R_J|D_K, L) = \frac{P(D_K|R_J, L)P_0(R_J)}{P(D_K|SM, L)P_0(SM) + \sum_I P(D_K|R_I, L)P_0(R_I)}$$

$$P(D_X|R_Y, L) = \prod_i \frac{\nu_i^{n_i} e^{-\nu_i}}{n_i!}$$
$$\nu_i = \sigma_i^{(Y)} L$$

$$\ln \left| P(D_X | R_Y, L) \right| = \sum_i \left(n_i \ln \nu_i - \ln n_i! - \nu_i \right)$$

Collider Phenomenology Discoverability + R Measurement UED vs SUSY MC Analysis First Results

First Results (250 GeV $\leq R^{-1} \leq 375$ GeV)

Presently computers are calculating away to generate billions of events at values of R⁻¹ between 250 GeV and 1475 GeV at 5 GeV intervals.

First results are available for $R^{-1} \leq 375 \text{ GeV}$

At these R's, no interesting UED discoverability potential relationship on θ exist.

However the resolution on R depends strongly on θ $\Delta R^{-1} = 1\sigma (\Delta \ln(\text{likelihood})=0.5)$

Collider Phenomenology Discoverability + R Measurement UED vs SUSY

UED vs SUSY

UED and SUSY mass spectra can be tuned to look alike KK-Parity → R-Parity LKP → LSP

 E_{μ} distribution identical for SUSY (though σ smaller)

However:

KK excitations have same spin as SM particles

SUSY sparticles have spin differing by 1/2

This can be exploited to discern between UED and SUSY, if spin can be measured.

This sort of search is especially well suited to a lepton collider (CLIC: Battaglia et al., hep-ph/0507284, hep-ph/0502041, c.f. LHC: Smillie & Webber, hep-ph/0507170)

Outlook & Conclusions

Next steps: Continuing calculations to smaller R SUSY-UED discernment potential at Muon Collider

- The motivation for building a muon collider / neutrino factory is strong
- Challenges still exist but are being actively investigated
- $\bullet\, The\ \mu C$ community is very motivated for the future
 - updating background calculations
 - updating detector designs
 - investigating new physics goals
 - reducing angle of detector shielding cone beneficial

Monday, November 22, 2010