Search for direct pair production of supersymmetric partners to the τ lepton in the all hadronic final state $\sqrt{s}=13$ TeV at CMS

CMS Physics Analysis Summary SUS-21-001

Ivan Popov

Supervisor: Michael Holzbock

Physics at the LHC Proseminar

01.08.2022

Outline:

- 1. Motivation
- 2. The CMS Detector
- 3. Event Selection
- 4. Background Estimation and Systematic Uncertainties
- 5. Results
- 6. Comparison to ATLAS stau search

Motivation

- Standard Model has many shortcomings
 - Unknown nature of dark matter and energy
 - Hierarchy Problem
 - CP violation
 - Many more
- Supersymmetry (SUSY) potential way to solve those
 - sparticles sleptons, squarks, neutralinos, charginos with 1/2 spin difference
 - Softly broken to allow larger particle masses
 - Consists of many models, using the same framework
 - For this talk we focus on MSSM (Minimal Supersymmetric Standard Model)

- Considers "the [minimum] number of new particle states and new interactions consistent with phenomenology"
- Charginos S-partners of charged SM gauge and Higgs bosons mix
- Neutralinos S-partners of neutral SM gauge and Higgs bosons imx
- Conservation of R parity
 - Assumed due to non-observation of proton decay

•
$$P_{R} = (-1)^{3(B-L)+2s}$$
, P_{R} (SM) = 1, P_{R} (SUSY) = -1

- Consequences:
 - Lightest SUSY (LSP) stable! (and DM candidate if neutral)
 - Each sparticle other than LSP decays to state with odd number of LSPs
 - In collider experiments sparticles can only be produced in even numbers

Why stau search?

- Lightest neutralino assumed to be LSP
- Light stau decays to τ and lightest neutralino
- If theory is true increased rate of τ final states in LHC

This analysis focuses only on hadronic tau decays to suppress SM backgrounds from **diboson** production and **ttbar** production!

The CMS Detector

Main Features:

- 3.8T, 6m diameter superconducting solenoid
- Silicon pixel and strip tracker
- Lead tungstate crystal ECAL
- Brass and scintillator HCAL
- Gas-ionisation muon chambers

Tau Reconstruction

- Particle Flow algorithm used for event reconstruction
- CMS "DeepTau" DNN algorithm used for tau ID with two working points
 - Loose (80% efficiency,0.5% misidentification rate)
 - Tight (40% efficiency,
 0.06% misidentification rate)
 - MisID stems from

quark/gluon originating jets

Event Selection

	Prompt SRs					
	SR bin	$\Sigma m_{\rm T}$ [GeV]	m_{T2} [GeV]	$p_{\rm T}^{\tau_{\rm h} 1}$ [GeV]		
		$N_{\rm j}=0$				
	1	200 - 250	25 - 50	< 90		
	2	200 - 250	25 - 50	> 90		
es	3	200 - 250	50 - 75	< 90		
00	4	200 - 250	50 - 75	> 90		
	5	200 - 250	> 75			
	6	250 - 300	25 - 50	< 90		
	7	250 - 300	25 - 50	> 90		
	8	250 - 300	50 - 75	< 90		
	9	250 - 300	50 - 75	> 90		
	10	250 - 300	> 75			
	11	300 - 350	25 - 50	10 <u></u>		
	12	300 - 350	50 - 75	<u></u>		
	13	300 - 350	75 - 100			
	14	300 - 350	> 100			
	15	> 350	25 - 50	0-00		
	16	> 350	50 - 75	10 <u></u>		
	17	> 350	75 - 100	1 <u></u>		
	18	> 350	> 100			
mhor	$N_{i} \ge 1$					
IDEI	19	200 - 250	25 - 50			
	20	200 - 250	> 50	5. 		
	21	250 - 300	25 - 50	10-0		
	22	250 - 300	50 - 75	<u> </u>		
	23	250 - 300	> 75			
re	24	300 - 350	25 - 50			
	25	300 - 350	50 - 75	1		
miss)]	26	300 - 350	> 75	10-00		
T /]	27	> 350	25 - 75			
	28	> 350	75 - 100	·		
	29	> 350	> 100			
		Disp	laced SRs			
	SR bin		$p_{\rm T}^{\tau_{\rm h}2}$ [GeV]			
	30		< 110			
	31		> 110			

- Basic event selection presence of exactly two τ -lepton candidates with opposite charge with $p_{\tau} > 40$ GeV and $|\eta| < 2.1$
- Multiple vetoes to suppress SM backgrounds
 - Any event with b-tagged jet to reduce top backgrounds
 - $\circ \quad |\Delta \varphi(\tau_h^{~(1)}, \tau_h^{~(2)})| > 1.5 \text{ to reduce } Z/\gamma * \to \tau \tau$
 - \circ p_T^{miss} > 50GeV to reduce events with two misIDed τ_h
- Further subdivide events in 31 search regions (SR) based on a number of kinematic quantities
- Sum of transverse masses $\Sigma m_{\rm T} = m_{\rm T}(\tau_{\rm h}^{(1)}, \vec{p}_{\rm T}^{\rm miss}) + m_{\rm T}(\tau_{\rm h}^{(2)}, \vec{p}_{\rm T}^{\rm miss})$ where $m_{\rm T}(\tau_{\rm h}, \vec{p}_{\rm T}^{\rm miss}) \equiv \sqrt{2p_{\rm T}^{\tau_{\rm h}}p_{\rm T}^{\rm miss}[1 - \cos\Delta\phi(\vec{p}_{\rm T}^{\tau_{\rm h}}, \vec{p}_{\rm T}^{\rm miss})]}$

Event Selection

- "Stransverse" mass $m_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{X(1)} + \vec{p}_{\text{T}}^{X(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\left(m_{\text{T}}^{(1)}, m_{\text{T}}^{(2)}\right) \right]$
- Transverse momentum of leading tau
- 0 jet and ≥ 1 jet events
- Fast decaying tau pairs ("prompt" SRs) and long lived tau pairs ("displaced" SRs)
 - Prompt SR criteria m_{T2} > 25GeV and Σm_T > 200GeV + at least one τ should NOT satisfy the displaced criteria
 - Displaced SR criteria significance of the τ_h impact parameter relative to the primary vertex in the transverse plane $d_{xy} > 5$ and three-dimensional impact parameter IP3D > 100µm

Event Selection

- "Stransverse" mass $m_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{X(1)} + \vec{p}_{\text{T}}^{X(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\left(m_{\text{T}}^{(1)}, m_{\text{T}}^{(2)}\right) \right]$
- Transverse momentum of leading tau
- 0 jet and ≥1 jet events
- Fast decaying tau pairs ("prompt" SRs) and long lived tau pairs ("displaced" SRs)
 - Prompt SR criteria m_{T2} > 25GeV and Σm_T > 200GeV + at least one τ should NOT satisfy the displaced criteria
 - Displaced SR criteria significance of the \u03c4_h impact parameter relative to the primary vertex in the transverse plane d_{xy} > 5 and three-dimensional impact parameter IP3D > 100µm

Prompt SKs			
SR bin	$\Sigma m_{\rm T}$ [GeV]	m _{T2} [GeV]	$p_{\rm T}^{\tau_{\rm h}1}$ [GeV]
	N	$f_i = 0$	
1	200 - 250	25 - 50	< 90
2	200 - 250	25 - 50	> 90
3	200 - 250	50 - 75	< 90
4	200 - 250	50 - 75	> 90
5	200 - 250	> 75	1
6	250 - 300	25 - 50	< 90
7	250 - 300	25 - 50	> 90
8	250 - 300	50 - 75	< 90
9	250 - 300	50 - 75	> 90
10	250 - 300	> 75	
11	300 - 350	25 - 50	10 <u>10</u>
12	300 - 350	50 - 75	2 <u></u>
13	300 - 350	75 - 100	9 1
14	300 - 350	> 100	8
15	> 350	25 - 50	
16	> 350	50 - 75	1 <u>0</u>
17	> 350	75 - 100	· · · · · · · · · · · · · · · · · · ·
18	> 350	> 100	
	N	$i_i \geq 1$	
19	200 - 250	25 - 50	8
20	200 - 250	> 50	s.
21	250 - 300	25 - 50	10
22	250 - 300	50 - 75	9 <u>88</u>
23	250 - 300	> 75	
24	300 - 350	25 - 50	3
25	300 - 350	50 - 75	3
26	300 - 350	> 75	1
27	> 350	25 - 75	9 <u></u>
28	> 350	75 - 100	9
29	> 350	> 100	
	Displ	aced SRs	
SR bin	$p_{\rm T}^{{ au_{\rm h}}^2}$ [GeV]		
30	< 110		
31		> 110	

Background estimation

- Reducible background, i.e misidentification in reconstruction of hadronic taus
 - Sources:
 - QCD dijet/multijet production, W+ jet production
 - Estimation:
 - Define control region (CR) with relaxed tau ID requirements ("loose SR")
 - Measure ratio of "tight" and "loose" taus in sample enriched in multi-jet events
 - Assume that ratio holds in SR so it can be used to extrapolate from the "loose SR" to the SR (correct to a degree)
 - Results: 10-15% misidentified "loose" taus as "tight" in sample depending on p_T, τ decay mode, pileup events and jet flavor

Contribution of genuine τ_h in CRs also taken in consideration!

Background estimation

- Irreducible background, i.e SM processes with the same final states as the ones the analysis is targeting
 - Main Sources: $Z/\gamma * \rightarrow \tau \tau$, ttbar, diboson
 - Estimation through "embedding" method:
 - $Z/\gamma^* \rightarrow \tau \tau$ is a hard process to select, thus select $Z/\gamma^* \rightarrow \mu \mu$ (same type of decay and branching ratio)
 - Remove µ tracks and energy deposits
 - Simulate two taus with same kinematic properties in empty detector
 - Combine energy deposits of simulated taus with original reconstructed event

Also applicable for **ttbar**, **single top** and **diboson** processes, but not for $H \rightarrow \tau \tau$ Better results than MC simulation!

Background estimation

- Irreducible background, i.e SM processes with the same final states as the ones the analysis is targeting
 - CR defined to calculate normalization factor:
 - 90 GeV > $m_{\tau\tau}$ > 50GeV, $p_{\tau\tau}^{T}$ > 50GeV (to ensure purity of genuine τ)
 - m_{T2} < 25GeV or Σm_{T2} < 200GeV (orthogonality with SR)
 - CR to calculate overestimation of top events:
 - At least 1 b-tagged jet
 - m_π > 100GeV

Uncertainties

	J	Uncertainty [%]		
Source	Genuine τ_h	Misidentified τ_{h}	Signal	
Statistical	8.3-141	5.0-100	6.3-52	
$\tau_{\rm h}$ ID efficiency	7.2-7.8	—	6.2-6.4	
$\tau_{\rm h}$ ID vs displacement			3.0	
$\tau_{\rm h}$ trigger efficiency	3.1-4.2		6.9–14	
$\tau_{\rm h}$ energy scale	0.1-35	<u> </u>	1.6-44	
$\tau_{\rm h}$ misidentification rate		30-56	—	
<i>p</i> _T ^{miss} trigger efficiency	1.0		1.5	
Embedded normalization	19			
Embedded top quark fraction	1.0-3.8		_	
Jet energy scale		<u>10 - 10</u>	0.7-32	
Jet energy resolution			1.3-55	
Unclustered energy		_	0.5-32	
B-tagging			0.2-1.1	
Pileup	_		1.0-28	
Pre-fire	7 <u></u> 2	<u></u> 2	0.1-0.4	
Integrated luminosity	_	_	1.8	
ISR	_	_	0.1-16	
Renormalization/factorization scale	5		0.4-3.6	

Most impactful uncertainties:

• Statistical uncertainty (limited event counts)

•

- Tau misidentification rate
 - Embedding method: normalization uncertainty and uncertainty due to top quark contamination

Results

- Plot shows background predictions after the maximum likelihood fit to data under background-only hypothesis
- Added expected yields for 3 models of left-handed stau pair production assuming prompt decay and 1 model model of maximally-mixed long-lived stau pairs
- Most of the sensitivity comes from SRs with 0 jets
- Consistent with prediction for SM background
- Used to set upper limits on cross section for the stau pair production

Results - prompt SRs

Expected and observed 95% CL cross section upper limits in degenerate stau scenario

Expected and observed 95% CL cross section upper limits in purely left-handed stau scenario

Results - prompt SRs

Exclusion limits in the **stau** vs **LSP** mass plane for promptly decaying stau in degenerate (left) and purely left-handed (right) scenarios. Stau masses between **115GeV** and **340GeV** are excluded for the case of near massless LSP for prompt purely left-handed scenarios!

popov@mpp.mpg.de

Physics at LHC

Results - displaced SRs

- Plots show expected and observed 95% CL cross section upper limits in a maximally mixed stau scenario with 1GeV LSP mass and varying cτ₀
- For cτ₀ = 0.1mm masses between 150 and 220 GeV are excluded for the case that the LSP is nearly massless

popov@mpp.mpg.de

Event selection - only two SRs!

SR-lowMass	SR-highMass		
2 tight τ (OS)	2 medium τ (OS), \geq 1 tight τ		
asymmetric di- $ au$ trigger	di- τ + $E_{\rm T}^{\rm miss}$ trigger		
$75 < E_{\rm T}^{\rm miss} < 150 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 150 {\rm ~GeV}$		
$\tau p_{\rm T}$ cut described in Section 5			
light lepton veto and 3rd medium τ veto			
<i>b</i> -jet veto			
Z/H veto ($m(\tau_1, \tau_2) > 120$ GeV)			
$ \Delta\phi(\tau_1,\tau_2) >0.8$			
$\Delta R(\tau_1,\tau_2) < 3.2$			
$m_{\rm T2} > 70 { m GeV}$			

Main differences to CMS event selection:

- Overall different search strategy focusing on distinguishing between low mass stau scenarios and high mass stau scenarios
- Much stricter stransverse mass requirements: m_{T2} > 70GeV (ATLAS) vs m_{T2} > 25GeV (CMS)
- $p_{T \text{ lead}} > 95 \text{GeV} (50 \text{GeV}) \text{ and}$ $p_{T \text{ sublead}} > 60 \text{GeV} (40 \text{GeV}) \text{ for lowMass}$ (highMass) vs $p_{T} > 40 \text{GeV}$

Selections	TVR -lowMass	ZVR -lowMass	VVVR -lowMass	TVR -highMass	ZVR -highMass	VVVR -highMass
	\geq 2 medium τ (OS), \geq 1 tight τ					
	$\geq 1 b$ -jet	<i>b</i> -jet veto		$\geq 1 b$ -jet	<i>b</i> -jet veto	
$m(\tau_1, \tau_2)$	-	< 70 GeV	< 110 GeV	-	< 60 GeV	< 110 GeV
$\Delta R(\tau_1, \tau_2)$	> 1.2	< 1	-	> 1.2	< 1	-
$m_{T,\tau_1} + m_{T,\tau_2}$	-	-	> 250 GeV	-	-	> 200 GeV
m _{T2}	> 60 GeV	< 60 GeV	> 60 GeV	> 60 GeV	< 60 GeV	> 60 GeV
	asymmetric di- τ trigger		di	$-\tau + E_{\rm T}^{\rm miss}$ trigg	ger	
Trigger	$60 < E_{T}^{miss} < 150 \text{ GeV}$		$E_{\rm T}^{\rm miss} > 150 {\rm ~GeV}$			
	$\tau p_{\rm T}$ and $E_{\rm T}^{\rm miss}$ cuts described in Section 5					

WCR	WVR			
1 medium τ and 1 isolated μ (OS)				
single-muon trigger				
$p_{\rm T}(\tau) > 60 \text{ GeV}, p_{\rm T}(\mu) > 50 \text{ GeV}$				
$E_{\rm T}^{\rm miss} > 60 {\rm ~GeV}$				
b-jet veto and top-tag	<i>b</i> -jet veto and top-tagged events veto			
$m(\mu, \tau) > 70 \text{ GeV}$				
$1 < \Delta R(\mu, \tau) < 3.5$				
$50 < m_{T,\mu} < 150 \text{ GeV}$				
$m_{{\rm T},\mu} + m_{{\rm T},\tau} > 250 {\rm ~GeV}$				
$30 < m_{\rm T2} < 70 {\rm GeV}$	$m_{\rm T2} > 70 {\rm GeV}$			

- **ABCD method** for Multijet (τ misID)
- **MC simulation** for W+ jets (τ misID)
- MC simulation for Z/γ* → ττ, ttbar, diboson (SM processes with same final states as the ones targeted by this analysis)

The post-fit m_{T2} distributions for both signal regions; backgrounds are again consistent with SM predictions

- SR 1,2,6,15,19,21,24:
 - 25GeV < m_{T2} < 50GeV
- SR 3,4,8,9,12,16,22,25:
 50GeV < m_{T2} < 75GeV

Exclusion limits in the **stau** vs **LSP** mass plane in combined left+right (left plot) and purely left-handed (right plot) scenarios. Stau masses between **120GeV** and **390GeV** are excluded for the combined scenario and stau masses between **155GeV** and **310GeV** for purely left-handed!

CMS exclusion limits: between **115GeV** and **340 GeV** for purely left-handed prompt stau decays

Conclusion

- In SUSY models with R-Parity conservation the LSP is stable and potential DM candidate
- Light stau decays to τ and LSP, thus increased rates of τs are expected at pp collider experiments
- Both ATLAS and CMS performed stau searches within 400GeV mass
- CMS analysis excludes stau masses between 115GeV and 340GeV for prompt purely left-handed states and stau masses between 50GeV and 220GeV for displaced ($c\tau_0 = 0.1mm$) scenarios with maximally mixed states
- ATLAS analysis excludes stau masses between 155GeV and 310GeV for purely left-handed states and stau masses between 120GeV and 390GeV for mixed states

popov@mpp.mpg.de

1

Results - prompt SRs

Due to lack of sensitivity for this model no hard exclusion limits can be set

Expected and observed 95% CL cross section upper limits in purely right-handed stau scenario