Deciphering neutrinos and searching for dark matter

- Susanne Mertens
- Technical University Munich
- MPP Symposium 2022

Open questions

Are neutrinos their own antiparticle ?

What is the mass of neutrinos ?

What is the nature of dark matter ?

General idea

Discovery of $0\nu\beta\beta$:

- Shed light on matter-antimatter asymmetry
- Prove that neutrinos are Majorana particles and that Lepton number is violated
- Half life reveals neutrino mass:

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q,Z) \cdot |M^{0\nu}|^2 \cdot m_{\beta\beta}^2$$

ТЛП

The challenge

Key requirements:

- Large exposure (tonne-scale)
- Excellent energy resolution (~ 1% @ $Q_{\beta\beta}$)
- Low background (< 1 cts/year/t/ROI)

LEGEND experiment

- Successor of Gerda and Majorana
- Experimental site (1st stage): Laboratori Nazionali del Gran Sasso (LNGS)
- International Collaboration (250 members)
- Sensitivity: $T_{1/2}$ (3 σ DS) > 10²⁸ yrs and $m_{\beta\beta}$ < 10 17 meV

LEGEND working principle

- Search for $0\nu\beta\beta$ in ⁷⁶Ge
- High-purity Ge detectors (enriched to 87% in ⁷⁶Ge), immersed in liquid argon active shield
- Point contact geometry provides:
 - excellent energy resolution (0.12% FWHM @ $Q_{\beta\beta}$)
 - excellent pulse-shape-discrimination against background
- Staged approach
 - LEGEND-200 (200 kg of Ge detectors)
 - LEGEND-1000 (1-ton of Ge detectors)

LEGEND electronics

• LEGEND-200:

- \circ discrete low-mass front end electronics
- electronics integration, optimization, characterization F. Edzards et al Particles 4 (2021) 4, 489-511
- highlight: LEGEND-60 kg (27 detectors) operational

Ш

LEGEND electronics

- LEGEND-200:
 - $\,\circ\,$ discrete low-mass front end electronics
 - \circ electronics optimization
 - F. Edzards et al Particles 4 (2021) 4, 489-511
 - $\,\circ\,$ highlight: LEGEND-60 kg

\circ LEGEND-1000:

- $\circ\,$ miniaturized ASIC-based read-out
- first successful tests with ASIC + Ge-detector (resolution, pulse-shape analysis, radiopurity)
 F. Edzards et al 2020 JINST 15 P09022
- \circ further R&D ongoing

LEGEND Perspective

• $T_{1/2}$ (3 σ DS) > 10²⁸ yr, $m_{\beta\beta}$ < 10 - 17 meV* > cover inverted mass ordering

Timeline & Connections

Open questions

Are neutrinos their own antiparticle ?

What is the mass of neutrinos ?

What is the nature of dark matter ?

ТЛП

Neutrino mass

Neutrino mass

General idea

Susanne Mertens (TUM)

 E_0

ТЛП

The challenge

- Strong tritium source: 10¹¹ decays/s
- Low background level: < 0.1 cps
- Excellent energy resolution: ~ 1 eV
- Precise understanding of the spectral shape

KATRIN

- Experimental site: Karlsruhe Institute of Technology (KIT)
- International Collaboration (150 members)
- Design sensitivity: 0.2 eV (90% CL) (5 years of measurement time)

Working Principle

Working Principle

Data analysis strategy

• Fit of theoretical prediction: $\Gamma(qU) \propto \mathbf{A} \cdot \int_{aU}^{E_0} D(E; \mathbf{m}_{\nu}^2, \mathbf{E}_0) \cdot R(qU, E) dE + \mathbf{B}$

- Free parameters: m_{ν}^2 , E_0 , B, A + O(20) nuisance parameters (constrained via calibrations)
- Blinded analysis: 1. MC twin data, 2. model blinding, 3. independent analysis teams

New analysis framework: Fitrium

- ✓ Complete analysis chain
- ✓ Official framework used for the neutrino mass analyses
- \checkmark Application for calibration analysis
 - ✓ E-gun measurements (gas density)
 - ✓ Gaseous krypton (E&B fields)

Fitrium 🔂 Project ID: 136 😭

F

---- **1,310** Commits 2 **47** Branches 🖉 **0** Tags 🗔 **2.9** MB Project Storage Modelling and fitting tools for the KATRIN experiment

ТЛП

Latest results

First campaign:

- total statistics: 2 million events
- best fit:
- $m_{
 u}^2 = ig(-1.\,0^{+0.9}_{-1.1}ig)\,{
 m eV^2}$ (stat. dom.)

PRL. 123, 221802 (2019) Phys. Rev. D 104, 012005 (2021) (corresponding author MPP/TUM)

Second campaign:

- total statistics: 4 million events
- best fit: $m_{\nu}^2 = (0.26^{+0.34}_{-0.34}) \text{eV}^2$ (stat. dom.)

tendeed by the light neuring

PHYSICAI REVIEW LETTERS

Nat. Phys. 18, 160–166 (2022) (corresponding author S.Mertens)

Latest results

First campaign:

- total statistics: 2 million events
- best fit: $m_{\nu}^2 = (-1, 0^{+0.9}_{-1.1}) \text{ eV}^2$ (stat. dom.)
- limit:

 $m_{
m v} < 1.1$ eV (90% CL)

PRL. 123, 221802 (2019) Phys. Rev. D 104, 012005 (2021) (corresponding author MPP/TUM)

Second campaign:

- total statistics: 4 million events
- best fit: $m_{\nu}^2 = (0.26^{+0.34}_{-0.34}) eV^2$ (stat. dom.)
- $m_{\nu} < 0.9 \, {
 m eV}$ (90% CL) • limit:

Nat. Phys. 18, 160–166 (2022) (corresponding author S.Mertens)

Combined result: $m_{
m v} < 0.8$ eV (90% CL) •

Beyond neutrino mass

→ Best limit based on terrestrial experiment

Phys. Rev. Lett. **129**, 011806 (2022) (corresponding author MPP/TUM)

→ Complementary results to oscillation experiments

Phys. Rev. Lett. **126**, 091803 (2021) (corresponding author MPP/TUM) Phys. Rev. D **105**, 072004 (2022) (corresponding author MPP/TUM)

\rightarrow First limit on oscillation-free LV parameter

arxiv:2207.06326 (2022) (corresponding author S. Mertens)

Beyond neutrino mass

→ Best limit based on terrestrial experiment

Phys. Rev. Lett. **129**, 011806 (corresponding author MPP/TUM)

Cosmic neutrino background

- Neutrinos decouple 1 s after the Big Bang
- About 400 v's per cm³ today
- Detection would confirm Big Bang theory
- Challenge: tiny cross-section

Comic neutrino background @ < 1 second

Signature of Relic Neutrinos

 Neutrino capture on tritium: no energy threshold

Results of Relic Neutrino Search

- Test for large **overdensity** η of neutrinos in our galaxy (based on **1**st and **2**nd v-mass campaigns)
- Improved limit by **2 orders of magnitude** wrt previous laboratory limits

KATRIN Data Taking Overview

KATRIN Data Taking Overview

New challenge:

- Combined fit of multiple-campaigns at different experimental conditions
- > 1000 data points and > 100 nuisance parameters
- Fit with analytical model becomes unpractical

RIGINS

Novel analysis with Machine Learning

- neural network = "smart" interpolator
- negligible uncertainty and bias on m_v^2 achievable
- **speed improvement** by 3 orders of magnitudes

Karl, Eller, Mertens, EPJ C 82 (2022) 5, 439

Historical context and outlook

1st and 2nd campaign combined limit:

- $m_{
 m v} < 0.8~{
 m eV}$ (90% CL)
- first direct neutrino-mass experiment to reach sub-eV sensitivity and limit

First five campaigns

- Analysis performed with NN
- Sensitivity of $m_{
 m v} < 0.5~{
 m eV}$ (90% CL)
- Unblinding in < 2 weeks in Munich

Final sensitivity

• $m_{
m v} < 0.2 - 0.3~{
m eV}$ (90% CL)

Historical context and outlook

1st and 2nd campaign combined limit:

- $m_{
 m v} < 0.8~{
 m eV}$ (90% CL)
- first direct neutrino-mass experiment to reach sub-eV sensitivity and limit

First five campaigns

- Analysis performed with NN
- Sensitivity of $m_{
 m v} < 0.5~{
 m eV}$ (90% CL)
- Unblinding in < 2 weeks in Munich

Final sensitivity

• $m_{
m v} < 0.2 - 0.3~{
m eV}$ (90% CL)

ТЛП

Beyond KATRIN

- Cyclotron Emission Radiation Spectroscopy (CRES)
 - ✓ eV-scale differential measurement
 ✓ "source = detector" concept
- CRES technology demonstrated by Project-8 experiment

Phys. Rev. Lett. 114, 1162501 (2015) J. Phys. G44 (2017) no.5, 054004

- Ultimate goal: 40 meV sensitivity Phys. Rev. C 103, No.6. (2021)
- Potentially strong contribution from MPP through microwave-detection expertise (MadMax)

Timeline & Connections

Open questions

Are neutrinos their own antiparticle ?

What is the mass of neutrinos ?

What is the nature of dark matter ?

Dark Matter Candidates

ТЛП

Sterile Neutrinos

Standard Model (SM)

ТЛП

Sterile Neutrinos

2.4 MeV 1.27 GeV 171.2 GeV 2/3 2/3 2/3 С Quarks charm top up Sterile neutrinos in the 4.8 MeV 104 MeV 4.2 GeV -1/3 -1/3 -1/3 0 S C keV mass range are dark down strange bottom matter candidates ~keV ~GeV ~GeV < 1 eV < 1 eV < 1 eV Leptons sterile sterile sterile neutrino neutrino neutrino 0.511 MeV 105.7 MeV 1.777 GeV e T U

Minimal Neutrino Standard Model

muon

tau

electron

Susanne Mertens (TUM)

L. Canetti, M. Drewes, and M. Shaposhnikov, PRL 110 061801 (2013)

Signature in beta decays

The challenge

A first deep look

Low-activity (0.5% of nominal) KATRIN run, down to 1.6 keV below E₀ with (10⁹ electrons)

 \checkmark excellent agreement of model and data (p-value = 0.6)

 \checkmark improved sensitivity to $\sin^2 \theta < 10^{-3}$ @ m₄ = 0.4 keV (arxiv 2207.06337, corresponding author S. Mertens)

T_{RISTAN} ETECTOR

Full spectrum measurement

> Develop a novel >1000-pixel focal plane detector

Mertens et al, Phys.Rev. D91 (2015) 4, 042005 Mertens et. al. JCAP 1502 (2015)

ET ETERSTER

TRISTAN Detector

Silicon drift detector (SDD) with > 1000 pixels

- \checkmark Capability of handling high rates (> 10⁸ cps)
- ✓ Excellent energy resolution (300 eV @ 20 keV) → diff. measurement
- \checkmark Integrated read-out \rightarrow focal plane design

TRISTAN Detector

• Ettore ASICs

Rigid flex PCB carrying 400 signal lines

Silicon carbide (CeSic) cooling link on copper cooling block

166-pixel SDD with integrated JFET

TRISTAN Detector

- ✓ Largest monolithic SDD ever operated ☺
- ✓ All pixels working
- \checkmark Average resolution of 160 eV (FWHM) at 6 keV
- ✓ Homogeneous performance
- ✓ Integration in KATRIN
 1 module (2022), 9 modules (2024/2025)

KATRIN/TRISTAN sensitivity to steriles

KATRIN+TRISTAN sensitivity to steriles

Dark Matter Candidates

Axions

✓ Solution to the strong CP problem $\theta_{QCD} \ \tilde{G}^{\mu\nu} G_{\mu\nu}$

✓ Promising dark matter candidate

IAXO: working principle

IAXO: the challenge

Our idea: low background SDD system

✓ Designed for x-ray detection

✓ Almost 100% efficiency in interesting energy region

✓ Excellent energy resolution (150 eV @ 1 – 10 keV)

✓ Low energy threshold (0.5 eV)

✓ No/little cooling, flexible footprint and pixel number

technical implementation feasible

improve the physics case of IAXO

 $\,\circ\,$ Can we reach the background goal ?

Background Demonstrator

- ✓ Design complete, assembly ongoing
- ✓ Operation at CanFranc underground laboratory and TUM shallow underground laboratory from September
- ✓ Very promising background projections

Ultimate low background SDD

- Novel Active shield idel
 - use deep-well Ge-detector as active shield for SDD system
 - combine expertise from TRISTAN and LEGEND
- Passive shield: dedicated for shallow-depth
 - scintillator plates
 - neutron shield: Pb/borated PE
- Projected bg-index: 10⁻⁹ cts/keV/cm²/s

Strong synergies with K. Schäffner (Cosinus) and F. Pedricca (CRESST)

Timeline & Connections

Conclusion

- Many exciting open questions ahead of us
- Search for $0\nu\beta\beta$
 - first detector strings of LEGEND-200 are operational,
 - promising R&D for ASIC-based read-out to reach ultimate discovery potential

spectrum 1st campaign with 1σ errorbars $\times 50$ spectrum 2nd campaigr

with 1σ errorbars x 50

Stat. Stat. and sys

50

Retarding energy -

- Direct measurement of the neutrino mass
 - first sub-eV kinematical limit on the neutrino mass with KATRIN
 - leading limits on relic neutrinos, eV-sterile neutrinos, Lorentz invariance violation •
 - new concepts (a-la Project-8) to probe the hierarchical neutrino mass regime
- Dark matter search
 - finalized TRISTAN detector module: upgrade KATRIN to search for sterile neutrinos
 - new low-background SDD-detector for a solar axion search with IAXO

✓ Promising potential for discoveries in the coming years

Thank you for your attention

Susanne Mertens Technical University Munich & Max Planck Institute for Physics

Backup slides

Uncertainty budget in second campaign

Sneak preview

Major improvement:

 Background reduction (÷2) via new EM field layout

Lokhov et al arXiv:2201.11743 (2022)

Calibration: e-gun, ^{83m}Kr

Lorentz Violation

- LV parametrized with a_{μ} (vector field)
- KATRIN acceptance angle introduces a preferred "direction"
- As the earth is rotating, the relative direction of KATRIN to the LV-violating vector changes
- Signature: oscillation of tritium endpoint with sidereal frequency (23h 56 min)

Lorentz Violation

- Search for oscillation in first nu-mass data
- No significant oscillation found
- First limit on $\left| \left(a_{of}^{(3)} \right)_{11} \right| < 3 \cdot 10^{-6} \text{ GeV}$
- arxiv:2207.06326 (2022), corresponding author S. Mertens

eV-scale Sterile Neutrinos

- Sterile neutrinos are a natural extension of the SM
- eV-scale motivated by anomalies in ν -oscillation experiments

Signature in beta decays

Sterile neutrino search in KATRIN

G. Mention et al Phys. Rev. D 83, 073006 (2011)
A. P. Serebrov et al., Pisma Zh. Eksp. Teor. Fiz. 109, 209 (2019)
V. V. Barinov et al. (BEST), arXiv:2109.11482 (2021)

Sterile neutrino search in KATRIN

✓ Start probing interesting parameters space

Phys. Rev. Lett. **126**, 091803 (2021), SFB corresp. author Phys. Rev. D **105**, 072004 (2022), SFB corresp. author

Sterile neutrino search in KATRIN

✓ Start probing interesting parameters space

Phys. Rev. Lett. **126**, 091803 (2021), SFB corresp. author Phys. Rev. D **105**, 072004 (2022), SFB corresp. Author

✓ Complementary probe to oscillation-based experiments

DANSS, arXiv:1911.10140 (2019) STEREO, Phys. Rev. D 102, 052002 (2020) PROSPECT, Phys. Rev. D 103, 032001 (2021)

TRISTAN Detector characterization

ПΠ

Custom-developed electron-gun:

• Measuremet of dead-layer, backscattering, charge-sharing

Custom-developed laser calibration source

• Measurement of charge drift times

LEGEND background projection

ТЛП

IAXO perspective

KATRIN+TRISTAN sensitivity to steriles

